메뉴 건너뛰기




Volumn 30, Issue 9, 2012, Pages 453-465

Biofilms as living catalysts in continuous chemical syntheses

Author keywords

[No Author keywords available]

Indexed keywords

BIO-HYDROGEN; BIOFILM REACTORS; CHEMICAL SYNTHESIS; ELECTRICITY PRODUCTION; ENVIRONMENTAL STRESS; FINE CHEMICALS; LIVING CATALYSTS; NOVEL SOLUTIONS; PRODUCT RECOVERY; SCALE-UP;

EID: 84865179767     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2012.05.003     Document Type: Review
Times cited : (207)

References (94)
  • 2
    • 33845326374 scopus 로고    scopus 로고
    • Microbial biocatalytic processes and their development
    • Woodley J.M. Microbial biocatalytic processes and their development. Adv. Appl. Microbiol. 2006, 60:1-15.
    • (2006) Adv. Appl. Microbiol. , vol.60 , pp. 1-15
    • Woodley, J.M.1
  • 4
    • 70349845435 scopus 로고    scopus 로고
    • Microbial biofilms: a concept for industrial catalysis?
    • Rosche B., et al. Microbial biofilms: a concept for industrial catalysis?. Trends Biotechnol. 2009, 27:636-643.
    • (2009) Trends Biotechnol. , vol.27 , pp. 636-643
    • Rosche, B.1
  • 5
    • 33644860341 scopus 로고    scopus 로고
    • Recent bio-applications of sol-gel materials
    • Avnir D., et al. Recent bio-applications of sol-gel materials. J. Mater. Chem. 2006, 16:1013-1030.
    • (2006) J. Mater. Chem. , vol.16 , pp. 1013-1030
    • Avnir, D.1
  • 7
    • 33750943450 scopus 로고    scopus 로고
    • Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans
    • Hekmat D., et al. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem. 2007, 42:71-76.
    • (2007) Process Biochem. , vol.42 , pp. 71-76
    • Hekmat, D.1
  • 10
    • 26944453668 scopus 로고    scopus 로고
    • Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates
    • Qureshi N., et al. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb. Cell Fact. 2005, 4:24.
    • (2005) Microb. Cell Fact. , vol.4 , pp. 24
    • Qureshi, N.1
  • 11
    • 33747178765 scopus 로고    scopus 로고
    • Biofilms: implications in bioremediation
    • Singh R., et al. Biofilms: implications in bioremediation. Trends Microbiol. 2006, 14:389-397.
    • (2006) Trends Microbiol. , vol.14 , pp. 389-397
    • Singh, R.1
  • 12
    • 77950969629 scopus 로고    scopus 로고
    • Application of electro-active biofilms
    • Erable B., et al. Application of electro-active biofilms. Biofouling 2010, 26:57-71.
    • (2010) Biofouling , vol.26 , pp. 57-71
    • Erable, B.1
  • 13
    • 77953206132 scopus 로고    scopus 로고
    • Recent findings on the viable but nonculturable state in pathogenic bacteria
    • Oliver J.D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 2010, 34:415-425.
    • (2010) FEMS Microbiol. Rev. , vol.34 , pp. 415-425
    • Oliver, J.D.1
  • 14
    • 60849103083 scopus 로고    scopus 로고
    • Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy
    • Pamp S.J., et al. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 2009, 75:90-103.
    • (2009) Cytometry A , vol.75 , pp. 90-103
    • Pamp, S.J.1
  • 15
    • 36248981481 scopus 로고    scopus 로고
    • Multimetal resistance and tolerance in microbial biofilms
    • Harrison J.J., et al. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 2007, 5:928-938.
    • (2007) Nat. Rev. Microbiol. , vol.5 , pp. 928-938
    • Harrison, J.J.1
  • 16
    • 0036847943 scopus 로고    scopus 로고
    • Effects of toxic metals and chemicals on biofilm and biocorrosion
    • Fang H.H., et al. Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res. 2002, 36:4709-4716.
    • (2002) Water Res. , vol.36 , pp. 4709-4716
    • Fang, H.H.1
  • 17
    • 79953208660 scopus 로고    scopus 로고
    • Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120DeltaC catalytic biofilms
    • Halan B., et al. Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120DeltaC catalytic biofilms. Appl. Environ. Microbiol. 2011, 77:1563-1571.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 1563-1571
    • Halan, B.1
  • 18
    • 36749033782 scopus 로고    scopus 로고
    • Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations
    • Gross R., et al. Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations. Biotechnol. Bioeng. 2007, 98:1123-1134.
    • (2007) Biotechnol. Bioeng. , vol.98 , pp. 1123-1134
    • Gross, R.1
  • 19
    • 77449143965 scopus 로고    scopus 로고
    • Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis
    • Gross R., et al. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol. Bioeng. 2010, 105:705-717.
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 705-717
    • Gross, R.1
  • 20
    • 77954291512 scopus 로고    scopus 로고
    • Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors
    • Halan B., et al. Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotechnol. Bioeng. 2010, 106:516-527.
    • (2010) Biotechnol. Bioeng. , vol.106 , pp. 516-527
    • Halan, B.1
  • 21
    • 33144473923 scopus 로고    scopus 로고
    • Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production
    • Li X.Z., et al. Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production. Appl. Environ. Microbiol. 2006, 72:1639-1644.
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 1639-1644
    • Li, X.Z.1
  • 22
    • 78751634236 scopus 로고    scopus 로고
    • Engineering biofilm formation and dispersal
    • Wood T.K., et al. Engineering biofilm formation and dispersal. Trends Biotechnol. 2011, 29:87-94.
    • (2011) Trends Biotechnol. , vol.29 , pp. 87-94
    • Wood, T.K.1
  • 23
    • 0141815940 scopus 로고    scopus 로고
    • Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms
    • Lawrence J.R., et al. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl. Environ. Microbiol. 2003, 69:5543-5554.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 5543-5554
    • Lawrence, J.R.1
  • 24
    • 77957280239 scopus 로고    scopus 로고
    • Microbial biofilm imaging ESEM vs HVSEM
    • Fedel M., et al. Microbial biofilm imaging ESEM vs HVSEM. GIT Imaging Microsc. 2007, 2:44-47.
    • (2007) GIT Imaging Microsc. , vol.2 , pp. 44-47
    • Fedel, M.1
  • 25
    • 27744547983 scopus 로고    scopus 로고
    • A critical overview of ESEM applications in the biological field
    • Muscariello L., et al. A critical overview of ESEM applications in the biological field. J. Cell Physiol. 2005, 205:328-334.
    • (2005) J. Cell Physiol. , vol.205 , pp. 328-334
    • Muscariello, L.1
  • 26
    • 33847253819 scopus 로고    scopus 로고
    • Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy
    • Priester J.H., et al. Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. J. Microbiol. Methods 2007, 68:577-587.
    • (2007) J. Microbiol. Methods , vol.68 , pp. 577-587
    • Priester, J.H.1
  • 27
    • 84900219312 scopus 로고    scopus 로고
    • Confocal microscopy of biofilms - spatiotemporal approaches
    • Springer Science+Business Media, J.B. Pawley (Ed.)
    • Palmer R.J., et al. Confocal microscopy of biofilms - spatiotemporal approaches. Handbook of Biological Confocal Microscopy 2006, 882-900. Springer Science+Business Media. 2nd edn. J.B. Pawley (Ed.).
    • (2006) Handbook of Biological Confocal Microscopy , pp. 882-900
    • Palmer, R.J.1
  • 28
    • 62149085567 scopus 로고    scopus 로고
    • Silver-palladium surfaces inhibit biofilm formation
    • Chiang W.C., et al. Silver-palladium surfaces inhibit biofilm formation. Appl. Environ. Microbiol. 2009, 75:1674-1678.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 1674-1678
    • Chiang, W.C.1
  • 29
    • 0037393129 scopus 로고    scopus 로고
    • Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa
    • Teitzel G.M., Parsek M.R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2003, 69:2313-2320.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 2313-2320
    • Teitzel, G.M.1    Parsek, M.R.2
  • 30
    • 34249864395 scopus 로고    scopus 로고
    • Staining of extracellular polymeric substances and cells in bioaggregates
    • Chen M.Y., et al. Staining of extracellular polymeric substances and cells in bioaggregates. Appl. Microbiol. Biotechnol. 2007, 75:467-474.
    • (2007) Appl. Microbiol. Biotechnol. , vol.75 , pp. 467-474
    • Chen, M.Y.1
  • 31
    • 23744473400 scopus 로고    scopus 로고
    • Optically transparent porous medium for nondestructive studies of microbial biofilm architecture and transport dynamics
    • Leis A.P., et al. Optically transparent porous medium for nondestructive studies of microbial biofilm architecture and transport dynamics. Appl. Environ. Microbiol. 2005, 71:4801-4808.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 4801-4808
    • Leis, A.P.1
  • 32
    • 79955480023 scopus 로고    scopus 로고
    • The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution
    • Lorite G.S., et al. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J. Colloid Interface Sci. 2011, 359:289-295.
    • (2011) J. Colloid Interface Sci. , vol.359 , pp. 289-295
    • Lorite, G.S.1
  • 33
    • 65749084917 scopus 로고    scopus 로고
    • AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater
    • Yuan S.J., Pehkonen S.O. AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater. Corros. Sci. 2009, 51:1372-1385.
    • (2009) Corros. Sci. , vol.51 , pp. 1372-1385
    • Yuan, S.J.1    Pehkonen, S.O.2
  • 34
    • 4444233817 scopus 로고    scopus 로고
    • Using nanotechniques to explore microbial surfaces
    • Dufrene Y.F. Using nanotechniques to explore microbial surfaces. Nat. Rev. Microbiol. 2004, 2:451-460.
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 451-460
    • Dufrene, Y.F.1
  • 35
    • 77958616320 scopus 로고    scopus 로고
    • Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography
    • Wagner M., et al. Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography. Biotechnol. Bioeng. 2010, 107:844-853.
    • (2010) Biotechnol. Bioeng. , vol.107 , pp. 844-853
    • Wagner, M.1
  • 36
    • 27644520156 scopus 로고    scopus 로고
    • Optical microsensors for analysis of microbial communities
    • Kuhl M. Optical microsensors for analysis of microbial communities. Methods Enzymol. 2005, 397:166-199.
    • (2005) Methods Enzymol. , vol.397 , pp. 166-199
    • Kuhl, M.1
  • 37
    • 27644492918 scopus 로고    scopus 로고
    • Analysis of microbial communities with electrochemical microsensors and microscale biosensors
    • Revsbech N.P. Analysis of microbial communities with electrochemical microsensors and microscale biosensors. Methods Enzymol. 2005, 397:147-166.
    • (2005) Methods Enzymol. , vol.397 , pp. 147-166
    • Revsbech, N.P.1
  • 38
    • 35148885157 scopus 로고    scopus 로고
    • Combined imaging of bacteria and oxygen in biofilms
    • Kuhl M., et al. Combined imaging of bacteria and oxygen in biofilms. Appl. Environ. Microbiol. 2007, 73:6289-6295.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 6289-6295
    • Kuhl, M.1
  • 39
    • 69249171333 scopus 로고    scopus 로고
    • Chapter 4: In vitro biofilm models: an overview
    • McBain A.J. Chapter 4: In vitro biofilm models: an overview. Adv. Appl. Microbiol. 2009, 69:99-132.
    • (2009) Adv. Appl. Microbiol. , vol.69 , pp. 99-132
    • McBain, A.J.1
  • 40
    • 33745170356 scopus 로고    scopus 로고
    • Nitrification in a biofilm at low pH values: role of in situ microenvironments and acid tolerance
    • Gieseke A., et al. Nitrification in a biofilm at low pH values: role of in situ microenvironments and acid tolerance. Appl. Environ. Microbiol. 2006, 72:4283-4292.
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 4283-4292
    • Gieseke, A.1
  • 41
    • 80053050837 scopus 로고    scopus 로고
    • A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions
    • Zhang W., et al. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions. Biotechnol. Bioeng. 2011, 108:2571-2582.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 2571-2582
    • Zhang, W.1
  • 42
    • 77954266296 scopus 로고    scopus 로고
    • New device for high-throughput viability screening of flow biofilms
    • Benoit M.R., et al. New device for high-throughput viability screening of flow biofilms. Appl. Environ. Microbiol. 2010, 76:4136-4142.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 4136-4142
    • Benoit, M.R.1
  • 43
    • 77953071468 scopus 로고    scopus 로고
    • Advances in biofilm reactors for production of value-added products
    • Cheng K.C., et al. Advances in biofilm reactors for production of value-added products. Appl. Microbiol. Biotechnol. 2010, 87:445-456.
    • (2010) Appl. Microbiol. Biotechnol. , vol.87 , pp. 445-456
    • Cheng, K.C.1
  • 44
    • 0029941370 scopus 로고    scopus 로고
    • Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors
    • Kunduru M.R., Pometto A.L. Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. J. Ind. Microbiol. 1996, 16:249-256.
    • (1996) J. Ind. Microbiol. , vol.16 , pp. 249-256
    • Kunduru, M.R.1    Pometto, A.L.2
  • 45
    • 77952544905 scopus 로고    scopus 로고
    • Nutrient manipulation as a basis for enzyme production in a gradostat bioreactor
    • Govender S., et al. Nutrient manipulation as a basis for enzyme production in a gradostat bioreactor. Enzyme Microb. Technol. 2010, 46:603-609.
    • (2010) Enzyme Microb. Technol. , vol.46 , pp. 603-609
    • Govender, S.1
  • 46
    • 84872212278 scopus 로고    scopus 로고
    • Coskata. Method of conversion of syngas using microorganism on hydrophilic membrane, WO2011068576
    • Hickey, R. et al. Coskata. Method of conversion of syngas using microorganism on hydrophilic membrane, WO2011068576.
    • Hickey, R.1
  • 48
    • 41849142619 scopus 로고    scopus 로고
    • Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements
    • Syron E., Casey E. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environ. Sci. Technol. 2008, 42:1833-1844.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 1833-1844
    • Syron, E.1    Casey, E.2
  • 49
    • 84872218434 scopus 로고    scopus 로고
    • TU Dortmund. Segmented flow biofilm reactor, PCT/EP2011/057724
    • Karande, R. et al. TU Dortmund. Segmented flow biofilm reactor, PCT/EP2011/057724.
    • Karande, R.1
  • 50
    • 0035667975 scopus 로고    scopus 로고
    • Continuous lactic acid fermentation using a plastic composite support biofilm reactor
    • Cotton J.C., et al. Continuous lactic acid fermentation using a plastic composite support biofilm reactor. Appl. Microbiol. Biotechnol. 2001, 57:626-630.
    • (2001) Appl. Microbiol. Biotechnol. , vol.57 , pp. 626-630
    • Cotton, J.C.1
  • 51
    • 77950629816 scopus 로고    scopus 로고
    • Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor
    • Cheng K.C., et al. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Appl. Microbiol. Biotechnol. 2010, 86:853-861.
    • (2010) Appl. Microbiol. Biotechnol. , vol.86 , pp. 853-861
    • Cheng, K.C.1
  • 52
    • 0038155163 scopus 로고    scopus 로고
    • Biofilm-specific cross-species induction of antimicrobial compounds in bacilli
    • Yan L., et al. Biofilm-specific cross-species induction of antimicrobial compounds in bacilli. Appl. Environ. Microbiol. 2003, 69:3719-3727.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 3719-3727
    • Yan, L.1
  • 53
    • 77649231320 scopus 로고    scopus 로고
    • Production of a potentially novel antimicrobial compound by a biofilm-forming marine Streptomyces sp. in a niche-mimic rotating disk bioreactor
    • Sarkar S., et al. Production of a potentially novel antimicrobial compound by a biofilm-forming marine Streptomyces sp. in a niche-mimic rotating disk bioreactor. Bioprocess Biosyst. Eng. 2010, 33:207-217.
    • (2010) Bioprocess Biosyst. Eng. , vol.33 , pp. 207-217
    • Sarkar, S.1
  • 54
    • 77649235028 scopus 로고    scopus 로고
    • Microbial electrolysis cell with a microbial biocathode
    • Jeremiasse A.W., et al. Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 2010, 78:39-43.
    • (2010) Bioelectrochemistry , vol.78 , pp. 39-43
    • Jeremiasse, A.W.1
  • 55
    • 57449102625 scopus 로고    scopus 로고
    • Microbial electrolysis cells for high yield hydrogen gas production from organic matter
    • Logan B.E., et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 2008, 42:8630-8640.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 8630-8640
    • Logan, B.E.1
  • 56
    • 77952899135 scopus 로고    scopus 로고
    • High current generation coupled to caustic production using a lamellar bioelectrochemical system
    • Rabaey K., et al. High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ. Sci. Technol. 2010, 44:4315-4321.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 4315-4321
    • Rabaey, K.1
  • 57
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng S., et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43:3953-3958.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 3953-3958
    • Cheng, S.1
  • 58
    • 75349113313 scopus 로고    scopus 로고
    • Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures
    • Steinbusch K.J., et al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ. Sci. Technol. 2010, 44:513-517.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 513-517
    • Steinbusch, K.J.1
  • 59
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin K.P., et al. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 2010, 1:e00103-e00110.
    • (2010) MBio , vol.1
    • Nevin, K.P.1
  • 60
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 2010, 85:1665-1671.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 61
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis - revisiting the electrical route for microbial production
    • Rabaey K., Rozendal R.A. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8:706-716.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 62
    • 64749084426 scopus 로고    scopus 로고
    • Exoelectrogenic bacteria that power microbial fuel cells
    • Logan B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7:375-381.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 375-381
    • Logan, B.E.1
  • 63
    • 79958010534 scopus 로고    scopus 로고
    • Microbial production of ethanol from carbon monoxide
    • Wilkins M.R., Atiyeh H.K. Microbial production of ethanol from carbon monoxide. Curr. Opin. Biotechnol. 2011, 22:326-330.
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 326-330
    • Wilkins, M.R.1    Atiyeh, H.K.2
  • 64
    • 84872218788 scopus 로고    scopus 로고
    • Coskata. Modular membrane supported bioreactor for conversion of syngas components to liquid products, WO 02/08438
    • Tsai, S-P. et al. Coskata. Modular membrane supported bioreactor for conversion of syngas components to liquid products, WO 02/08438.
    • Tsai, S-P.1
  • 65
    • 84872213970 scopus 로고    scopus 로고
    • Coskata. Membrane supported bioreactor for conversion of syngas components to liquid products, WO2008154301
    • Hickey, R. et al. Coskata. Membrane supported bioreactor for conversion of syngas components to liquid products, WO2008154301.
    • Hickey, R.1
  • 66
    • 79957995288 scopus 로고    scopus 로고
    • Fermentative production of ethanol from carbon monoxide
    • Kopke M., et al. Fermentative production of ethanol from carbon monoxide. Curr. Opin. Biotechnol. 2011, 22:320-325.
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 320-325
    • Kopke, M.1
  • 67
    • 56949091810 scopus 로고    scopus 로고
    • Self-immobilized recombinant Acetobacter xylinum for biotransformation
    • Setyawati M.I., et al. Self-immobilized recombinant Acetobacter xylinum for biotransformation. Biochem. Eng. J. 2009, 43:78-84.
    • (2009) Biochem. Eng. J. , vol.43 , pp. 78-84
    • Setyawati, M.I.1
  • 68
    • 79958742197 scopus 로고    scopus 로고
    • Engineering biofilms for biocatalysis
    • Tsoligkas A.N., et al. Engineering biofilms for biocatalysis. Chembiochem 2010, 12:1391-1395.
    • (2010) Chembiochem , vol.12 , pp. 1391-1395
    • Tsoligkas, A.N.1
  • 69
    • 77952878802 scopus 로고    scopus 로고
    • Constructing multispecies biofilms with defined compositions by sequential deposition of bacteria
    • Stubblefield B.A., et al. Constructing multispecies biofilms with defined compositions by sequential deposition of bacteria. Appl. Microbiol. Biotechnol. 2010, 86:1941-1946.
    • (2010) Appl. Microbiol. Biotechnol. , vol.86 , pp. 1941-1946
    • Stubblefield, B.A.1
  • 70
    • 0036711963 scopus 로고    scopus 로고
    • Biofilms: microbial life on surfaces
    • Donlan R.M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 2002, 8:881-890.
    • (2002) Emerg. Infect. Dis. , vol.8 , pp. 881-890
    • Donlan, R.M.1
  • 71
    • 85047677949 scopus 로고    scopus 로고
    • The use of windows of operation as a bioprocess design tool
    • Woodley J.M., Titchener-Hooker N.J. The use of windows of operation as a bioprocess design tool. Bioprocess Eng. 1996, 14:263-268.
    • (1996) Bioprocess Eng. , vol.14 , pp. 263-268
    • Woodley, J.M.1    Titchener-Hooker, N.J.2
  • 72
    • 33750523254 scopus 로고    scopus 로고
    • Productivity of selective electroenzymatic reduction and oxidation reactions: theoretical and practical considerations
    • Ruinatscha R., et al. Productivity of selective electroenzymatic reduction and oxidation reactions: theoretical and practical considerations. Adv. Synth. Catal. 2006, 348:2015-2026.
    • (2006) Adv. Synth. Catal. , vol.348 , pp. 2015-2026
    • Ruinatscha, R.1
  • 73
    • 0036900263 scopus 로고    scopus 로고
    • The production of fine chemicals by biotransformations
    • Straathof A.J., et al. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 2002, 13:548-556.
    • (2002) Curr. Opin. Biotechnol. , vol.13 , pp. 548-556
    • Straathof, A.J.1
  • 74
    • 0029379892 scopus 로고
    • Biofilm characterization and activity analysis in water and waste-water treatment
    • Lazarova V., Manem J. Biofilm characterization and activity analysis in water and waste-water treatment. Water Res. 1995, 29:2227-2245.
    • (1995) Water Res. , vol.29 , pp. 2227-2245
    • Lazarova, V.1    Manem, J.2
  • 75
    • 78650576480 scopus 로고    scopus 로고
    • Rotating disk electrodes to assess river biofilm thickness and elasticity
    • Bouletreau S., et al. Rotating disk electrodes to assess river biofilm thickness and elasticity. Water Res. 2010, 45:1347-1357.
    • (2010) Water Res. , vol.45 , pp. 1347-1357
    • Bouletreau, S.1
  • 76
    • 0034972313 scopus 로고    scopus 로고
    • Uniaxial compression measurement device for investigation of the mechanical stability of biofilms
    • Korstgens V., et al. Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J. Microbiol. Methods 2001, 46:9-17.
    • (2001) J. Microbiol. Methods , vol.46 , pp. 9-17
    • Korstgens, V.1
  • 77
    • 35948933488 scopus 로고    scopus 로고
    • Low-load compression testing: a novel way of measuring biofilm thickness
    • Paramonova E., et al. Low-load compression testing: a novel way of measuring biofilm thickness. Appl. Environ. Microbiol. 2007, 73:7023-7028.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 7023-7028
    • Paramonova, E.1
  • 78
    • 27844486524 scopus 로고    scopus 로고
    • Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties. Part I. Comparison of the efficiency of eight EPS extraction methods
    • Comte S., et al. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties. Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb. Technol. 2006, 38:237-245.
    • (2006) Enzyme Microb. Technol. , vol.38 , pp. 237-245
    • Comte, S.1
  • 79
    • 57849124962 scopus 로고    scopus 로고
    • Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy
    • Ivleva N.P., et al. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal. Bioanal. Chem. 2009, 393:197-206.
    • (2009) Anal. Bioanal. Chem. , vol.393 , pp. 197-206
    • Ivleva, N.P.1
  • 80
    • 63549116403 scopus 로고    scopus 로고
    • Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer
    • van Groenestijn J.W., et al. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer. Biotechnol. Bioeng. 2009, 102:1361-1367.
    • (2009) Biotechnol. Bioeng. , vol.102 , pp. 1361-1367
    • van Groenestijn, J.W.1
  • 81
    • 0037026970 scopus 로고    scopus 로고
    • Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor
    • Tay A., Yang S.T. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol. Bioeng. 2002, 80:1-12.
    • (2002) Biotechnol. Bioeng. , vol.80 , pp. 1-12
    • Tay, A.1    Yang, S.T.2
  • 82
    • 0002164654 scopus 로고
    • Reactor design for the ABE fermentation using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar
    • Qureshi N., Maddox I.S. Reactor design for the ABE fermentation using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Bioprocess Eng. 1988, 3:69-72.
    • (1988) Bioprocess Eng. , vol.3 , pp. 69-72
    • Qureshi, N.1    Maddox, I.S.2
  • 83
    • 0029783287 scopus 로고    scopus 로고
    • Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column
    • Cao N., et al. Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl. Environ. Microbiol. 1996, 62:2926-2931.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 2926-2931
    • Cao, N.1
  • 84
    • 0030814440 scopus 로고    scopus 로고
    • Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation
    • Ho K.L., et al. Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation. Appl. Environ. Microbiol. 1997, 63:2533-2542.
    • (1997) Appl. Environ. Microbiol. , vol.63 , pp. 2533-2542
    • Ho, K.L.1
  • 85
    • 0019901264 scopus 로고
    • Continuous high-rate production of ethanol by zymomonas mobilis in an attached film expanded bed fermenter
    • Bland R.R., et al. Continuous high-rate production of ethanol by zymomonas mobilis in an attached film expanded bed fermenter. Biotechnol. Lett. 1982, 4:323-328.
    • (1982) Biotechnol. Lett. , vol.4 , pp. 323-328
    • Bland, R.R.1
  • 86
    • 3242780928 scopus 로고    scopus 로고
    • Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beuerinckii
    • Qureshi N., et al. Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beuerinckii. Food Bioprod. Process. 2004, 82:164-173.
    • (2004) Food Bioprod. Process. , vol.82 , pp. 164-173
    • Qureshi, N.1
  • 87
    • 0027112631 scopus 로고
    • Continuous propionic-acid fermentation by immobilized propionibacterium acidipropionici in a novel packed bed bioreactor
    • Lewis V.P., Yang S.T. Continuous propionic-acid fermentation by immobilized propionibacterium acidipropionici in a novel packed bed bioreactor. Biotechnol. Bioeng. 1992, 40:465-474.
    • (1992) Biotechnol. Bioeng. , vol.40 , pp. 465-474
    • Lewis, V.P.1    Yang, S.T.2
  • 88
    • 0020641201 scopus 로고
    • Ethanol production using Zymomonas mobilis immobilized on an ion-exchange Resin
    • Krug T.A., Daugulis A.J. Ethanol production using Zymomonas mobilis immobilized on an ion-exchange Resin. Biotechnol. Lett. 1983, 5:159-164.
    • (1983) Biotechnol. Lett. , vol.5 , pp. 159-164
    • Krug, T.A.1    Daugulis, A.J.2
  • 89
    • 0027255189 scopus 로고
    • Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor. Part II. Process development for the fermentation of hydrolyzed B-starch without sterilization
    • Weusterbotz D., et al. Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor. Part II. Process development for the fermentation of hydrolyzed B-starch without sterilization. Appl. Microbiol. Biotechnol. 1993, 39:685-690.
    • (1993) Appl. Microbiol. Biotechnol. , vol.39 , pp. 685-690
    • Weusterbotz, D.1
  • 90
    • 0023399932 scopus 로고
    • Solid carriers for a Clostridium acetobutylicum that produces acetone and butanol
    • Welsh F.W., et al. Solid carriers for a Clostridium acetobutylicum that produces acetone and butanol. Enzyme Microb. Technol. 1987, 9:500-502.
    • (1987) Enzyme Microb. Technol. , vol.9 , pp. 500-502
    • Welsh, F.W.1
  • 91
    • 0023454706 scopus 로고
    • Continuous solvent production from whey permeate using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar
    • Qureshi N., Maddox I.S. Continuous solvent production from whey permeate using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Enzyme Microb. Technol. 1987, 9:668-671.
    • (1987) Enzyme Microb. Technol. , vol.9 , pp. 668-671
    • Qureshi, N.1    Maddox, I.S.2
  • 92
    • 8744251303 scopus 로고    scopus 로고
    • Poly(3-hydroxybutyrate) biosynthesis in the biofilm of Alcaligenes eutrophus, using glucose enzymatically released from pulp fiber sludge
    • Zhang S., et al. Poly(3-hydroxybutyrate) biosynthesis in the biofilm of Alcaligenes eutrophus, using glucose enzymatically released from pulp fiber sludge. Appl. Environ. Microbiol. 2004, 70:6776-6782.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 6776-6782
    • Zhang, S.1
  • 93
    • 0033817593 scopus 로고    scopus 로고
    • Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick
    • Qureshi N., et al. Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick. World J. Microbiol. Biotechnol. 2000, 16:377-382.
    • (2000) World J. Microbiol. Biotechnol. , vol.16 , pp. 377-382
    • Qureshi, N.1
  • 94
    • 0033764531 scopus 로고    scopus 로고
    • Quantification of biofilm structures by the novel computer program COMSTAT
    • Heydorn A., et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000, 146(Pt 10):2395-2407.
    • (2000) Microbiology , vol.146 , Issue.PART 10 , pp. 2395-2407
    • Heydorn, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.