-
9
-
-
85038997629
-
-
J. L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960)
-
J. L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960).
-
-
-
-
12
-
-
0037017925
-
-
L. Barack, Y. Mino, H. Nakano, A. Ori, and M. Sasaki, Phys. Rev. Lett. 88, 091101 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 91101
-
-
Barack, L.1
Mino, Y.2
Nakano, H.3
Ori, A.4
Sasaki, M.5
-
17
-
-
85038984225
-
-
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973)
-
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).
-
-
-
-
20
-
-
85038974474
-
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, England, 1992)
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, England, 1992).
-
-
-
-
25
-
-
85039029316
-
-
S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)
-
S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).
-
-
-
-
27
-
-
85038999202
-
-
Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965)
-
Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965).
-
-
-
-
28
-
-
85038982451
-
-
G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Harcourt/Academic, San Diego, 2001)
-
G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Harcourt/Academic, San Diego, 2001).
-
-
-
-
29
-
-
0009567803
-
-
R. A. Breuer, P. L. Chrzanowski, H. G. Hughes III, and C. W. Misner, Phys. Rev. D 8, 4309 (1973).
-
(1973)
Phys. Rev. D
, vol.8
, pp. 4309
-
-
Breuer, R.A.1
Chrzanowski, P.L.2
Hughes, H.G.3
Misner, C.W.4
-
30
-
-
85038996211
-
-
We use (Formula presented) throughout in places where other authors have used (Formula presented) or (Formula presented) to denote the “actual” field
-
We use (Formula presented) throughout in places where other authors have used (Formula presented) or (Formula presented) to denote the “actual” field 2.
-
-
-
-
31
-
-
85039028394
-
-
The differentiability of (Formula presented) is controlled by boundary conditions and initial data. We consider nondifferentiable initial data or shock waves coming in from boundaries to be physically unreasonable
-
The differentiability of (Formula presented) is controlled by boundary conditions and initial data. We consider nondifferentiable initial data or shock waves coming in from boundaries to be physically unreasonable.
-
-
-
|