-
1
-
-
77952376296
-
Investigating the local-meta-model CMA-ES for large population sizes
-
C. Di Chio et al. editor. LNCS 6024, Springer
-
Z. Bouzarkouna, A. Auger, and D. Ding. Investigating the local-meta-model CMA-ES for large population sizes. In C. Di Chio et al., editor, Proc. EvoNUM'10, pages 402-411. LNCS 6024, Springer, 2010.
-
(2010)
Proc. EvoNUM'10
, pp. 402-411
-
-
Bouzarkouna, Z.1
Auger, A.2
Ding, D.3
-
2
-
-
77955974018
-
Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions
-
Updated February 2010
-
S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
-
(2009)
Technical Report 2009/20, Research Center PPE
-
-
Finck, S.1
Hansen, N.2
Ros, R.3
Auger, A.4
-
3
-
-
84864676979
-
Efficient evolutionary optimization using individual-based evolution control and neural networks: A comparative study
-
L. Graning, Y. Jin, and B. Sendhoff. Efficient evolutionary optimization using individual-based evolution control and neural networks: A comparative study. In Proc. ESANN'2005, pages 27-29, 2005.
-
(2005)
Proc. ESANN'2005
, pp. 27-29
-
-
Graning, L.1
Jin, Y.2
Sendhoff, B.3
-
4
-
-
77955961663
-
Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed
-
New York, NY, USA, ACM
-
N. Hansen. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO '09, pages 2389-2396, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO '09
, pp. 2389-2396
-
-
Hansen, N.1
-
5
-
-
84865010613
-
Real-parameter black-box optimization benchmarking 2012: Experimental setup
-
N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
-
(2012)
Technical Report INRIA
-
-
Hansen, N.1
Auger, A.2
Finck, S.3
Ros, R.4
-
6
-
-
77955891392
-
Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions
-
Updated February 2010
-
N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
-
(2009)
Technical Report RR-6829, INRIA
-
-
Hansen, N.1
Finck, S.2
Ros, R.3
Auger, A.4
-
7
-
-
0035377566
-
Completely derandomized self-adaptation in evolution strategies
-
N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2):159-195, 2001.
-
(2001)
Evolutionary Computation
, vol.9
, Issue.2
, pp. 159-195
-
-
Hansen, N.1
Ostermeier, A.2
-
8
-
-
77955962962
-
Benchmarking a weighted negative covariance matrix update on the BBOB-2010 noiseless testbed
-
New York, NY, USA, ACM
-
N. Hansen and R. Ros. Benchmarking a weighted negative covariance matrix update on the BBOB-2010 noiseless testbed. In GECCO '10: Proceedings of the 12th annual conference comp on Genetic and evolutionary computation, pages 1673-1680, New York, NY, USA, 2010. ACM.
-
(2010)
GECCO '10: Proceedings of the 12th Annual Conference Comp on Genetic and Evolutionary Computation
, pp. 1673-1680
-
-
Hansen, N.1
Ros, R.2
-
9
-
-
34250782169
-
Controlled model assisted evolution strategy with adaptive preselection
-
DOI 10.1109/ISEFS.2006.251155, 4016719, Proceedings of the 2006 International Symposium on Evolving Fuzzy Systems, EFS'06
-
F. Hoffmann and S. Holemann. Controlled model assisted evolution strategy with adaptive preselection. In International Symposium on Evolving Fuzzy Systems, pages 182-187. IEEE, 2006. (Pubitemid 46948108)
-
(2006)
Proceedings of the 2006 International Symposium on Evolving Fuzzy Systems, EFS'06
, pp. 182-187
-
-
Hoffmann, F.1
Holemann, S.2
-
10
-
-
84857540338
-
Sampling strategies in ordinal regression for surrogate assisted evolutionary optimization
-
page To appear
-
H. Ingimundardottir and T. Runarsson. Sampling strategies in ordinal regression for surrogate assisted evolutionary optimization. In Proc. ISDA'2011, page To appear, 2011.
-
(2011)
Proc. ISDA'2011
-
-
Ingimundardottir, H.1
Runarsson, T.2
-
11
-
-
34547312868
-
Improving evolution strategies through active covariance matrix adaptation
-
1688662, 2006 IEEE Congress on Evolutionary Computation, CEC 2006
-
G. A. Jastrebski and D. V. Arnold. Improving evolution strategies through active covariance matrix adaptation. In Proc. CEC'2006, pages 2814-2821, 2006. (Pubitemid 47130851)
-
(2006)
2006 IEEE Congress on Evolutionary Computation, CEC 2006
, pp. 2814-2821
-
-
Jastrebski, G.A.1
Arnold, D.V.2
-
12
-
-
33750233848
-
Local meta-models for optimization using evolution strategies
-
Parallel Problem Solving from Nature, PPSN IX - 9th International Conference, Procedings
-
S. Kern, N. Hansen, and P. Koumoutsakos. Local meta-models for optimization using evolution strategies. In Th. Runarsson et al., editor, PPSN IX, pages 939-948. LNCS 4193, Springer, 2006. (Pubitemid 44609470)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4193
, pp. 939-948
-
-
Kern, S.1
Hansen, N.2
Koumoutsakos, P.3
-
13
-
-
77949574154
-
Covariance matrix self-adaptation and kernel regression - Perspectives of evolutionary optimization in kernel machines
-
O. Kramer. Covariance matrix self-adaptation and kernel regression - perspectives of evolutionary optimization in kernel machines. Fundam. Inf., 98:87-106, 2010.
-
(2010)
Fundam. Inf.
, vol.98
, pp. 87-106
-
-
Kramer, O.1
-
14
-
-
78149275569
-
Comparison-based optimizers need comparison-based surrogates
-
J. K. R. Schaefer, C. Cotta and G. Rudolph, editors. LNCS 6238, Springer
-
I. Loshchilov, M. Schoenauer, and M. Sebag. Comparison-Based Optimizers Need Comparison-Based Surrogates. In J. K. R. Schaefer, C. Cotta and G. Rudolph, editors, Proc. PPSN XI, pages 364-373. LNCS 6238, Springer, 2010.
-
(2010)
Proc. PPSN XI
, pp. 364-373
-
-
Loshchilov, I.1
Schoenauer, M.2
Sebag, M.3
-
15
-
-
84864647671
-
Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy
-
page to appear, New York, NY, USA, ACM
-
I. Loshchilov, M. Schoenauer, and M. Sebag. Self-Adaptive Surrogate-Assisted Covariance Matrix Adaptation Evolution Strategy. In GECCO '12: Proceedings of the 14th annual conference on Genetic and evolutionary computation, page to appear, New York, NY, USA, 2012. ACM.
-
(2012)
GECCO '12: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation
-
-
Loshchilov, I.1
Schoenauer, M.2
Sebag, M.3
-
17
-
-
33750226018
-
Ordinal regression in evolutionary computation
-
Parallel Problem Solving from Nature, PPSN IX - 9th International Conference, Procedings
-
T. P. Runarsson. Ordinal regression in evolutionary computation. In Th. Runarsson et al., editor, PPSN IX, pages 1048-1057. LNCS 4193, Springer, 2006. (Pubitemid 44609481)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4193
, pp. 1048-1057
-
-
Runarsson, T.P.1
-
18
-
-
84901437141
-
Evolution strategies assisted by gaussian processes with improved pre-selection criterion
-
H. Ulmer, F. Streichert, and A. Zell. Evolution strategies assisted by gaussian processes with improved pre-selection criterion. In Proc. CEC'2003, pages 692-699, 2003.
-
(2003)
Proc. CEC'2003
, pp. 692-699
-
-
Ulmer, H.1
Streichert, F.2
Zell, A.3
|