메뉴 건너뛰기




Volumn 2431 LNAI, Issue , 2002, Pages 361-372

Iteratively selecting feature subsets for mining from high-dimensional databases

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DATABASE SYSTEMS; FEATURE EXTRACTION; SET THEORY; VIRTUAL REALITY;

EID: 84864838607     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45681-3_30     Document Type: Conference Paper
Times cited : (3)

References (12)
  • 1
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • Breiman, L.: Pasting Small Votes for Classification in Large Databases and On-line. Machine Learning 36 (1999) 85-103
    • (1999) Machine Learning , vol.36 , pp. 85-103
    • Breiman, L.1
  • 2
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Scholkopf, B., Burges, C., Smola, A. (eds.), B. MIT Press, Cambridge, 363, 366
    • Joachims, T. Making Large-scale SVM Learning Practical. In: Scholkopf, B., Burges, C., Smola, A. (eds.): Advances in Kernel Methods - Support Vector Learning, B. MIT Press, Cambridge (1999) 363, 366
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 3
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • 362
    • Kohavi, R., John, G. H.: Wrappers for Feature Subset Selection. Artificial Intelligence 97 (1997) 273-324 362
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 7
    • 32544439732 scopus 로고    scopus 로고
    • Efficient mining from large databases by query learning
    • Langley, P. (eds.). Morgan Kaufmann, Stanford Univ., CA, 364
    • Mamitsuka, H., Abe, N.: Efficient Mining from Large Databases by Query Learning. In: Langley, P. (eds.): Proceedings of the Seventeenth International Conference on Machine Learning. Morgan Kaufmann, Stanford Univ., CA (2000) 575-582 364
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning , pp. 575-582
    • Mamitsuka, H.1    Abe, N.2
  • 8
    • 0013161560 scopus 로고    scopus 로고
    • On feature selection: Learning with exponentially many irrelevant features as training examples
    • Shavlik, J. (eds.). Morgan Kaufmann, Madison, WI, 362
    • Ng, A.: On Feature Selection: Learning with Exponentially Many Irrelevant Features as Training Examples. In: Shavlik, J. (eds.): Proceedings of the Fifteenth Intenational Conference on Machine Learning. Morgan Kaufmann, Madison, WI (1998) 404-412 362
    • (1998) Proceedings of the Fifteenth Intenational Conference on Machine Learning , pp. 404-412
    • Ng, A.1
  • 9
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • 362
    • Provost, F., Kolluri, V.: A Survey of Methods for Scaling up Inductive Algorithms. Knowledge Discovery and Data Mining 3 (1999) 131-169 362
    • (1999) Knowledge Discovery and Data Mining , vol.3 , pp. 131-169
    • Provost, F.1    Kolluri, V.2
  • 12
    • 0003076895 scopus 로고    scopus 로고
    • Feature selection for high-dimensional genomic microarray data
    • Brodley, C. E., Danyluk, A. P. (eds.). Morgan Kaufmann, Madison, WI
    • Xing, E. P., Jordan, M. I., Karp, R. M.: Feature Selection for High-dimensional Genomic Microarray Data In: Brodley, C. E., Danyluk, A. P. (eds.): Proceedings of the Eighteenth Intenational Conference on Machine Learning. Morgan Kaufmann, Madison, WI (2001) 601-608
    • (2001) Proceedings of the Eighteenth Intenational Conference on Machine Learning , pp. 601-608
    • Xing, E.P.1    Jordan, M.I.2    Karp, R.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.