메뉴 건너뛰기




Volumn 12, Issue 2-3, 2012, Pages 219-233

Using AIC in multiple linear regression framework with multiply imputed data

Author keywords

AIC; Incomplete data; Missing data; Model selection; Multiple imputation

Indexed keywords

AKAIKE INFORMATION CRITERION; ALGORITHM; CONFERENCE PAPER; CONTROLLED STUDY; DATA ANALYSIS; INFORMATION PROCESSING; MATHEMATICAL ANALYSIS; MATHEMATICAL COMPUTING; MATHEMATICAL PARAMETERS; MULTIPLE LINEAR REGRESSION ANALYSIS; PRIORITY JOURNAL; SIMULATION; STANDARDIZATION; STATISTICAL ANALYSIS;

EID: 84864696412     PISSN: 13873741     EISSN: 15729400     Source Type: Journal    
DOI: 10.1007/s10742-012-0088-8     Document Type: Conference Paper
Times cited : (43)

References (21)
  • 1
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • Akaike, H.: A new look at statistical model identification. IEEE Trans. Autom. Control 19(6), 716-723 (1974
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference: Understanding AIC and BIC in model selection
    • DOI 10.1177/0049124104268644
    • Burnham, K., Anderson, D.: Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261-304 (2004 (Pubitemid 39519124)
    • (2004) Sociological Methods and Research , vol.33 , Issue.2 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 3
    • 1542332334 scopus 로고
    • The method of multiple working hypotheses
    • Chamberlain, T.: The method of multiple working hypotheses. Science 15, 93 (1890
    • (1890) Science , vol.15 , pp. 93
    • Chamberlain, T.1
  • 4
    • 56049125498 scopus 로고    scopus 로고
    • Variable selection with incomplete covariate dat
    • Claeskens, G., Consentino, F.: Variable selection with incomplete covariate data. Biometrics 64, 1062-1096 (2008
    • (2008) Biometrics , vol.64 , pp. 1062-1096
    • Claeskens, G.1    Consentino, F.2
  • 5
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L., Schafer, J., Kam, C.: A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol. Methods 6, 330-351 (2001 (Pubitemid 33599063)
    • (2001) Psychological Methods , vol.6 , Issue.3 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 6
    • 77955282117 scopus 로고    scopus 로고
    • Order selection tests with multiply-imputed dat
    • Consentino, F., Claeskens, G.: Order selection tests with multiply-imputed data. Comput. Stat. Data Anal. 54(10), 2284-2295 (2010
    • (2010) Comput. Stat. Data Anal. , vol.54 , Issue.10 , pp. 2284-2295
    • Consentino, F.1    Claeskens, G.2
  • 7
    • 33845210459 scopus 로고    scopus 로고
    • Inferences on missing information under multiple imputation and two-stage multiple imputation
    • Harel, O.: Inferences on missing information under multiple imputation and two-stage multiple imputation. Stat. Method. 4, 75 (2007
    • (2007) Stat. Method. , vol.4 , pp. 75
    • Harel, O.1
  • 8
    • 69049110853 scopus 로고    scopus 로고
    • The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation
    • Harel, O.: The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation. J. Appl. Stat. 36(10), 1109-1118 (2009
    • (2009) J. Appl. Stat. , vol.36 , Issue.10 , pp. 1109-1118
    • Harel, O.1
  • 9
    • 70349119250 scopus 로고
    • Regression and time series model selection in small samples
    • Hurvich, C., Tsai, C.: Regression and time series model selection in small samples. Biometrika 76, 297-307 (1989
    • (1989) Biometrik , vol.76 , pp. 297-307
    • Hurvich, C.1    Tsai, C.2
  • 10
    • 0001159321 scopus 로고
    • The impact of model selection on inference in linear regression
    • Hurvich, C., Tsai, C.: The impact of model selection on inference in linear regression. Am. Stat. 44, 214-217 (1990
    • (1990) Am. Stat. , vol.44 , pp. 214-217
    • Hurvich, C.1    Tsai, C.2
  • 11
    • 84950431939 scopus 로고
    • Incomplete data in generalized linear models
    • Ibrahim, J.G.: Incomplete data in generalized linear models. J. Am. Stat. Assoc. 85, 765-769 (1990
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 765-769
    • Ibrahim, J.G.1
  • 13
    • 0001109923 scopus 로고
    • Performing likelihood ratio tests with multiply-imputed data sets
    • Meng, X.-L., Rubin, D.B.: Performing likelihood ratio tests with multiply-imputed data sets. Biometrika 79, 103-11 (1992
    • (1992) Biometrik , vol.79 , pp. 103-11
    • Meng, X.-L.1    Rubin, D.B.2
  • 16
    • 0017133178 scopus 로고
    • Inference and missing dat
    • Rubin, D.: Inference and missing data. Biometrika 63, 581 (1976
    • (1976) Biometrik , vol.63 , pp. 581
    • Rubin, D.1
  • 19
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J., Graham, J.: Missing data: Our view of the state of the art. Psychol. Methods 7, 147 (2002
    • (2002) Psychol. Methods , vol.7 , pp. 147
    • Schafer, J.1    Graham, J.2
  • 20
    • 48249126832 scopus 로고    scopus 로고
    • How should variable selection be performed with multiply imputed data?
    • Wood, A.M., White, I.R., Royston, P.: How should variable selection be performed with multiply imputed data? Stat. Med. 27, 3227-3246 (2008
    • (2008) Stat Med. , vol.27 , pp. 3227-3246
    • Wood, A.M.1    White, I.R.2    Royston, P.3
  • 21
    • 20744443786 scopus 로고    scopus 로고
    • Imputation and variable selection in linear regression models with missing covariates
    • Yang, X., Belin, T.R., Boscardin, W.J.: Imputation and variable selection in linear regression models with missing covariates. Biometrics 61(2), 498-506 (2005)
    • (2005) Biometrics , vol.61 , Issue.2 , pp. 498-506
    • Yang, X.1    Belin, T.R.2    Boscardin, W.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.