메뉴 건너뛰기




Volumn 6, Issue , 2012, Pages 47-52

A combined approach for clustering based on K-means and gravitational search algorithms

Author keywords

Clustering; Gravitational search algorithm; K means

Indexed keywords

ANT COLONY OPTIMIZATION (ACO); CLUSTERING; CONVERGENCE SPEED; DATA CLUSTERING; DATA CLUSTERING ALGORITHM; DATA OBJECTS; DATA SETS; GRAVITATIONAL SEARCH ALGORITHMS; HONEY-BEE MATING OPTIMIZATION; INITIAL STATE; K-MEANS; K-MEANS ALGORITHM; LOCAL OPTIMA; NEAR-OPTIMAL SOLUTIONS; PROBLEM SPACE; SIMPLE AND EFFICIENT ALGORITHMS; UCI REPOSITORY;

EID: 84864614741     PISSN: 22106502     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.swevo.2012.02.003     Document Type: Article
Times cited : (189)

References (50)
  • 2
    • 44649098316 scopus 로고    scopus 로고
    • Novel meta-heuristic algorithms for clustering web documents
    • M. Mahdavi Novel meta-heuristic algorithms for clustering web documents Applied Mathematics and Computation 201 1-2 2008 441 451
    • (2008) Applied Mathematics and Computation , vol.201 , Issue.12 , pp. 441-451
    • Mahdavi, M.1
  • 3
    • 77249134035 scopus 로고    scopus 로고
    • Dynamic hierarchical algorithms for document clustering
    • R. Gil-Garcia, and A. Pons-Porrata Dynamic hierarchical algorithms for document clustering Pattern Recognition Letters 31 6 2010 469 477
    • (2010) Pattern Recognition Letters , vol.31 , Issue.6 , pp. 469-477
    • Gil-Garcia, R.1    Pons-Porrata, A.2
  • 5
    • 77956059965 scopus 로고    scopus 로고
    • Evolutionary clustering based vector quantization and SPIHT coding for image compression
    • S. Yang Evolutionary clustering based vector quantization and SPIHT coding for image compression Pattern Recognition Letters 31 13 2010 1773 1780
    • (2010) Pattern Recognition Letters , vol.31 , Issue.13 , pp. 1773-1780
    • Yang, S.1
  • 6
    • 33750972001 scopus 로고    scopus 로고
    • Anomaly detection in web documents using crisp and fuzzy-based cosine clustering methodology
    • DOI 10.1016/j.ins.2006.03.006, PII S0020025506000818
    • M. Friedman Anomaly detection in web documents using crisp and fuzzy-based cosine clustering methodology Information Sciences 177 2 2007 467 475 (Pubitemid 44740290)
    • (2007) Information Sciences , vol.177 , Issue.2 , pp. 467-475
    • Friedman, M.1    Last, M.2    Makover, Y.3    Kandel, A.4
  • 7
    • 77956478694 scopus 로고    scopus 로고
    • Clustering ellipses for anomaly detection
    • M. Moshtaghi Clustering ellipses for anomaly detection Pattern Recognition 44 1 2011 55 69
    • (2011) Pattern Recognition , vol.44 , Issue.1 , pp. 55-69
    • Moshtaghi, M.1
  • 8
    • 39449097889 scopus 로고    scopus 로고
    • Techniques for clustering gene expression data
    • DOI 10.1016/j.compbiomed.2007.11.001, PII S0010482507001801
    • G. Kerr Techniques for clustering gene expression data Computers in Biology and Medicine 38 3 2008 283 293 (Pubitemid 351273199)
    • (2008) Computers in Biology and Medicine , vol.38 , Issue.3 , pp. 283-293
    • Kerr, G.1    Ruskin, H.J.2    Crane, M.3    Doolan, P.4
  • 9
    • 34147171087 scopus 로고    scopus 로고
    • Dynamic agglomerative clustering of gene expression profiles
    • DOI 10.1016/j.patrec.2007.01.009, PII S0167865507000153
    • F. Liang, and N. Wang Dynamic agglomerative clustering of gene expression profiles Pattern Recognition Letters 28 9 2007 1062 1076 (Pubitemid 46560882)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.9 , pp. 1062-1076
    • Liang, F.1    Wang, N.2
  • 10
    • 44449147811 scopus 로고    scopus 로고
    • MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach
    • L. Liao, T. Lin, and B. Li MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach Pattern Recognition Letters 29 10 2008 1580 1588
    • (2008) Pattern Recognition Letters , vol.29 , Issue.10 , pp. 1580-1588
    • Liao, L.1    Lin, T.2    Li, B.3
  • 11
    • 0031271214 scopus 로고    scopus 로고
    • A comparison of clustering algorithms applied to color image quantization
    • PII S0167865597001165
    • P. Scheunders A comparison of clustering algorithms applied to color image quantization Pattern Recognition Letters 18 11-13 1997 1379 1384 (Pubitemid 127433102)
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11-13 , pp. 1379-1384
    • Scheunders, P.1
  • 12
    • 34347239690 scopus 로고    scopus 로고
    • Image segmentation by clustering of spatial patterns
    • DOI 10.1016/j.patrec.2007.03.012, PII S0167865507001092
    • Y. Xia Image segmentation by clustering of spatial patterns Pattern Recognition Letters 28 12 2007 1548 1555 (Pubitemid 46994725)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.12 , pp. 1548-1555
    • Xia, Y.1    Feng, D.2    Wang, T.3    Zhao, R.4    Zhang, Y.5
  • 13
    • 67649403091 scopus 로고    scopus 로고
    • Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation
    • J. Fan, M. Han, and J. Wang Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation Pattern Recognition 42 11 2009 2527 2540
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2527-2540
    • Fan, J.1    Han, M.2    Wang, J.3
  • 14
    • 58349098117 scopus 로고    scopus 로고
    • Constraint-based clustering and its applications in construction management
    • Y.-M. Cheng, and S.-S. Leu Constraint-based clustering and its applications in construction management Expert Systems with Applications 36 3, Part 2 2009 5761 5767
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 PART 2 , pp. 5761-5767
    • Cheng, Y.-M.1    Leu, S.-S.2
  • 15
    • 33744985462 scopus 로고    scopus 로고
    • A mixed-integer programming approach to the clustering problem with an application in customer segmentation
    • DOI 10.1016/j.ejor.2005.04.048, PII S0377221705006879
    • B. Saglam A mixed-integer programming approach to the clustering problem with an application in customer segmentation European Journal of Operational Research 173 3 2006 866 879 (Pubitemid 43866332)
    • (2006) European Journal of Operational Research , vol.173 , Issue.3 , pp. 866-879
    • Saglam, B.1    Salman, F.S.2    Sayin, S.3    Turkay, M.4
  • 16
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • A.K. Jain Data clustering: 50 years beyond K-means Pattern Recognition Letters 31 8 2010 651 666
    • (2010) Pattern Recognition Letters , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 18
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
    • E.W. Forgy Cluster analysis of multivariate data: efficiency versus interpretability of classifications Biometrics 21 1965 2
    • (1965) Biometrics , vol.21 , pp. 2
    • Forgy, E.W.1
  • 20
    • 37349047955 scopus 로고    scopus 로고
    • A hybridized approach to data clustering
    • DOI 10.1016/j.eswa.2007.01.028, PII S0957417407000528
    • Y.-T. Kao, E. Zahara, and I.W. Kao A hybridized approach to data clustering Expert Systems with Applications 34 3 2008 1754 1762 (Pubitemid 350298200)
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 1754-1762
    • Kao, Y.-T.1    Zahara, E.2    Kao, I.-W.3
  • 21
    • 0021202650 scopus 로고
    • K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
    • S.Z. Selim, and M.A. Ismail K-means-type algorithms: a generalized convergence theorem and characterization of local optimality IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6 1 1984 81 87 (Pubitemid 14529037)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.1 , pp. 81-87
    • Selim, S.Z.1    Ismail, M.A.2
  • 22
    • 0026359031 scopus 로고
    • A simulated annealing algorithm for the clustering problem
    • S.Z. Selim, and K. Alsultan A simulated annealing algorithm for the clustering problem Pattern Recognition 24 10 1991 1003 1008
    • (1991) Pattern Recognition , vol.24 , Issue.10 , pp. 1003-1008
    • Selim, S.Z.1    Alsultan, K.2
  • 23
    • 0029478402 scopus 로고
    • A tabu search approach to the clustering problem
    • DOI 10.1016/0031-3203(95)00022-R
    • K.S. Al-Sultan A Tabu search approach to the clustering problem Pattern Recognition 28 9 1995 1443 1451 (Pubitemid 26442212)
    • (1995) Pattern Recognition , vol.28 , Issue.9 , pp. 1443-1451
    • Al-Sultan, K.S.1
  • 24
    • 0033882604 scopus 로고    scopus 로고
    • A tabu-search-based heuristic for clustering
    • C.S. Sung, and H.W. Jin A tabu-search-based heuristic for clustering Pattern Recognition 33 5 2000 849 858
    • (2000) Pattern Recognition , vol.33 , Issue.5 , pp. 849-858
    • Sung, C.S.1    Jin, H.W.2
  • 25
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • U. Maulik, and S. Bandyopadhyay Genetic algorithm-based clustering technique Pattern Recognition 33 9 2000 1455 1465
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 29
    • 1542507077 scopus 로고    scopus 로고
    • An ant colony approach for clustering
    • DOI 10.1016/j.aca.2003.12.032, PII S0003267003016374
    • P.S. Shelokar, V.K. Jayaraman, and B.D. Kulkarni An ant colony approach for clustering Analytica Chimica Acta 509 2 2004 187 195 (Pubitemid 38344155)
    • (2004) Analytica Chimica Acta , vol.509 , Issue.2 , pp. 187-195
    • Shelokar, P.S.1    Jayaraman, V.K.2    Kulkarni, B.D.3
  • 30
    • 77957901422 scopus 로고    scopus 로고
    • A novel clustering approach: Artificial bee colony (ABC) algorithm
    • D. Karaboga, and C. Ozturk A novel clustering approach: artificial bee colony (ABC) algorithm Applied Soft Computing 11 1 2011 652 657
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 652-657
    • Karaboga, D.1    Ozturk, C.2
  • 31
    • 34250683045 scopus 로고    scopus 로고
    • Application of honey-bee mating optimization algorithm on clustering
    • DOI 10.1016/j.amc.2007.02.029, PII S0096300307001853
    • M. Fathian, B. Amiri, and A. Maroosi Application of honey-bee mating optimization algorithm on clustering Applied Mathematics and Computation 190 2 2007 1502 1513 (Pubitemid 46935891)
    • (2007) Applied Mathematics and Computation , vol.190 , Issue.2 , pp. 1502-1513
    • Fathian, M.1    Amiri, B.2    Maroosi, A.3
  • 36
    • 9144254114 scopus 로고    scopus 로고
    • Robust growing neural gas algorithm with application in cluster analysis
    • DOI 10.1016/j.neunet.2004.06.013, PII S0893608004001662, New Developments in Self-Organizing Systems
    • A.K. Qin, and P.N. Suganthan Robust growing neural gas algorithm with application in cluster analysis Neural Networks 17 8-9 2004 1135 1148 (Pubitemid 39539533)
    • (2004) Neural Networks , vol.17 , Issue.8-9 , pp. 1135-1148
    • Qin, A.K.1    Suganthan, P.N.2
  • 38
    • 59549092990 scopus 로고    scopus 로고
    • Automatic hard clustering using improved differential evolution algorithm
    • S. Das, A. Abraham, and A. Konar Automatic hard clustering using improved differential evolution algorithm Studies in Computational Intelligence 2009 137 174
    • (2009) Studies in Computational Intelligence , pp. 137-174
    • Das, S.1    Abraham, A.2    Konar, A.3
  • 39
    • 85126505349 scopus 로고    scopus 로고
    • Lecture Notes in Computer Science including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
    • Part Automatic Clustering Based on Invasive Weed Optimization Algorithm Lecture Notes in Computer Science including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics 2011 105 112
    • (2011) Part Automatic Clustering Based on Invasive Weed Optimization Algorithm , pp. 105-112
  • 42
    • 45549104169 scopus 로고    scopus 로고
    • Modified global-means algorithm for minimum sum-of-squares clustering problems
    • M.B. Adil Modified global-means algorithm for minimum sum-of-squares clustering problems Pattern Recognition 41 10 2008 3192 3199
    • (2008) Pattern Recognition , vol.41 , Issue.10 , pp. 3192-3199
    • Adil, M.B.1
  • 43
    • 78650294946 scopus 로고    scopus 로고
    • Fast modified global k-means algorithm for incremental cluster construction
    • A.M. Bagirov, J. Ugon, and D. Webb Fast modified global k-means algorithm for incremental cluster construction Pattern Recognition 44 4 2011 866 876
    • (2011) Pattern Recognition , vol.44 , Issue.4 , pp. 866-876
    • Bagirov, A.M.1    Ugon, J.2    Webb, D.3
  • 44
    • 75749122583 scopus 로고    scopus 로고
    • Fast global k-means clustering using cluster membership and inequality
    • J.Z.C. Lai, and T.-J. Huang Fast global k-means clustering using cluster membership and inequality Pattern Recognition 43 5 2010 1954 1963
    • (2010) Pattern Recognition , vol.43 , Issue.5 , pp. 1954-1963
    • Lai, J.Z.C.1    Huang, T.-J.2
  • 45
    • 0036487280 scopus 로고    scopus 로고
    • The global k-means clustering algorithm
    • DOI 10.1016/S0031-3203(02)00060-2, PII S0031320302000602
    • A. Likas, N. Vlassis, and J.J. Verbeek The global k-means clustering algorithm Pattern Recognition 36 2 2003 451 461 (Pubitemid 35212840)
    • (2002) Pattern Recognition , vol.36 , Issue.2 , pp. 451-461
    • Likas, A.1    Vlassis, N.2    J. Verbeek, J.3
  • 47
    • 33947106382 scopus 로고    scopus 로고
    • A method for initialising the K-means clustering algorithm using kd-trees
    • DOI 10.1016/j.patrec.2007.01.001, PII S0167865507000165
    • S.J. Redmond, and C. Heneghan A method for initialising the K-means clustering algorithm using kd-trees Pattern Recognition Letters 28 8 2007 965 973 (Pubitemid 46413378)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.8 , pp. 965-973
    • Redmond, S.J.1    Heneghan, C.2
  • 48
    • 80054069436 scopus 로고    scopus 로고
    • Application of gravitational search algorithm on data clustering
    • Springer Berlin, Heidelberg
    • A. Hatamlou, S. Abdullah, and H. Nezamabadi-pour Application of gravitational search algorithm on data clustering Rough Sets and Knowledge Technology 2011 Springer Berlin, Heidelberg 337 346
    • (2011) Rough Sets and Knowledge Technology , pp. 337-346
    • Hatamlou, A.1    Abdullah, S.2    Nezamabadi-Pour, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.