메뉴 건너뛰기




Volumn 10, Issue 5, 2012, Pages

A between-class overlapping filter-based method for transcriptome data analysis

Author keywords

between class overlapping; Feature selection; filter based method; transcriptome data

Indexed keywords

TRANSCRIPTOME;

EID: 84864451927     PISSN: 02197200     EISSN: 17576334     Source Type: Journal    
DOI: 10.1142/S0219720012500102     Document Type: Article
Times cited : (24)

References (36)
  • 2
    • 17744402661 scopus 로고    scopus 로고
    • Feature subset selection by Bayesian networks based optimization
    • Inza I, Larranaga P, Etxeberria R, Sierra B, Feature subset selection by Bayesian networks based optimization, Artif Intel 123:157-184, 2000.
    • (2000) Artif Intel , vol.123 , pp. 157-184
    • Inza, I.1    Larranaga, P.2    Etxeberria, R.3    Sierra, B.4
  • 4
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V, Gene selection for cancer classification using support vector machines, Mach Learn 46:389-422, 2002.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 5
    • 25144492516 scopus 로고    scopus 로고
    • Effcient feature selection via analysis of relevance and redundancy
    • Yu L, Liu H, Effcient feature selection via analysis of relevance and redundancy, J Mach Learn Res 5:1205-1224, 2004.
    • (2004) J Mach Learn Res , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 7
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors
    • Jafari P, Azuaje F, An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors, BMC Med Inform Decision Making 6:27, 2006.
    • (2006) BMC Med Inform Decision Making , vol.6 , pp. 27
    • Jafari, P.1    Azuaje, F.2
  • 8
    • 33748466311 scopus 로고    scopus 로고
    • Selecting features in microarray classification using ROC curves
    • Mamitsuka H, Selecting features in microarray classification using ROC curves, Pattern Recog 39:2393-2404, 2006.
    • (2006) Pattern Recog , vol.39 , pp. 2393-2404
    • Mamitsuka, H.1
  • 10
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P, A review of feature selection techniques in bioinformatics, Bioinformatics 23(19):2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 11
    • 77953003233 scopus 로고    scopus 로고
    • Cancer classification using single genes
    • Wang X, Gotoh O, Cancer classification using single genes, Genome Inform 23:179-188, 2009.
    • (2009) Genome Inform , vol.23 , pp. 179-188
    • Wang, X.1    Gotoh, O.2
  • 12
    • 84868119274 scopus 로고    scopus 로고
    • Null space based feature selection method for gene expression data
    • doi: 10.1007/s13042-011-0061-9
    • Sharma A, Imoto S, Miyano S, Sharma V, Null space based feature selection method for gene expression data, Int J Mach Learn Cybernetics, 2011, doi: 10.1007/s13042-011-0061-9.
    • (2011) Int J Mach Learn Cybernetics
    • Sharma, A.1    Imoto, S.2    Miyano, S.3    Sharma, V.4
  • 13
    • 79957589638 scopus 로고    scopus 로고
    • Strategy of finding optimal number of features on gene expression data
    • Sharma A, Koh CH, Imoto S, Miyano S, Strategy of finding optimal number of features on gene expression data, IEE Electron Lett 47(8):480-482, 2011.
    • (2011) IEE Electron Lett , vol.47 , Issue.8 , pp. 480-482
    • Sharma, A.1    Koh, C.H.2    Imoto, S.3    Miyano, S.4
  • 17
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D, Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics 16:906-914, 2000.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 18
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • Baldi P, Long A, A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes, Bioinformatics 17(6):509-516, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 509-516
    • Baldi, P.1    Long, A.2
  • 20
    • 0034911875 scopus 로고    scopus 로고
    • An effcient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • Thomas J, Olson JM, Tapscott SJ, Zhao LP, An effcient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles, Genome Res 11:1227-1236, 2001.
    • (2001) Genome Res , vol.11 , pp. 1227-1236
    • Thomas, J.1    Olson, J.M.2    Tapscott, S.J.3    Zhao, L.P.4
  • 21
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • Pan W, A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments, Bioinformatics 18:546-554, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 546-554
    • Pan, W.1
  • 22
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discriminant methods for the classifi-cation of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP, Comparison of discriminant methods for the classifi-cation of tumors using gene expression data, J Am Stat Assoc 97:77-87, 2002.
    • (2002) J Am Stat Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 23
    • 33645643565 scopus 로고    scopus 로고
    • A two-sample Bayesian t-test for microarray data
    • Fox R, Dimmic M, A two-sample Bayesian t-test for microarray data, BMC Bioinformatics 7:126, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 126
    • Fox, R.1    Dimmic, M.2
  • 24
    • 33750598536 scopus 로고    scopus 로고
    • A solution to the curse of dimensionality problem in pairwise scoring techniques
    • Mak MW, Kung SY, A solution to the curse of dimensionality problem in pairwise scoring techniques, Int Conf Neural Inform Proc, pp. 314-323, 2006.
    • (2006) Int Conf Neural Inform Proc , pp. 314-323
    • Mak, M.W.1    Kung, S.Y.2
  • 25
    • 0001500753 scopus 로고
    • Pattern recognition and reduction of dimensionality
    • In Krishnaiah P, Kanal L (eds.) Amsterdam
    • Ben-Bassat M, Pattern recognition and reduction of dimensionality, In Krishnaiah P, Kanal L (eds.) Handbook of Statistics II, Vol. 1, Amsterdam, pp. 773-791, 1982.
    • (1982) Handbook of Statistics II , vol.1 , pp. 773-791
    • Ben-Bassat, M.1
  • 26
    • 33744584654 scopus 로고
    • Introduction of decision trees
    • Quinlan JR, Introduction of decision trees, Mach Learn 1(1):81-106, 1986.
    • (1986) Mach Learn , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 27
    • 84864559232 scopus 로고    scopus 로고
    • A Chi-square-test for word importance differentiation in text classification
    • Meesad P, Boonrawd P, Nuipian V, A Chi-square-test for word importance differentiation in text classification, Int Conf Inform Electron Engg 6:110-114, 2011.
    • (2011) Int Conf Inform Electron Engg , vol.6 , pp. 110-114
    • Meesad, P.1    Boonrawd, P.2    Nuipian, V.3
  • 29
    • 50649092679 scopus 로고    scopus 로고
    • Rotational linear discriminant analysis technique for dimensionality reduction
    • Sharma A, Paliwal KK, Rotational linear discriminant analysis technique for dimensionality reduction, IEEE Transact Knowledge and Data Engg 20(10):1336-1347, 2008.
    • (2008) IEEE Transact Knowledge and Data Engg , vol.20 , Issue.10 , pp. 1336-1347
    • Sharma, A.1    Paliwal, K.K.2
  • 30
    • 0038815962 scopus 로고
    • John Wiley & Sons
    • Anton H, Calculus, John Wiley & Sons, 1995.
    • (1995) Calculus
    • Anton, H.1
  • 31
    • 33947360303 scopus 로고    scopus 로고
    • The impact of samples imbalance on identifying differentially expressed genes
    • Yang K, Li J, Gao H, The impact of samples imbalance on identifying differentially expressed genes, BMC Bioinformatics 7(Suppl 4):S8, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 4
    • Yang, K.1    Li, J.2    Gao, H.3
  • 33
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard RW, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics 12(1):55-67, 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 34
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R, Regression shrinkage and selection via the lasso, J Royal Stat Soc B 58(1):267-288, 1996.
    • (1996) J Royal Stat Soc B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 36
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R, Regularization paths for generalized linear models via coordinate descent, J Stat Software 33(1), 2010.
    • (2010) J Stat Software , vol.33 , Issue.1
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.