-
1
-
-
0035914983
-
Thermal transport measurements of individual multiwalled nanotubes
-
10.1103/PhysRevLett.87.215502
-
P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Thermal transport measurements of individual multiwalled nanotubes., Phys. Rev. Lett. 87, 215502 (2001). 10.1103/PhysRevLett.87.215502
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 215502
-
-
Kim, P.1
Shi, L.2
Majumdar, A.3
McEuen, P.L.4
-
2
-
-
27144490668
-
Measuring the thermal conductivity of a single carbon nanotube
-
10.1103/PhysRevLett.95.065502
-
M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube., Phys. Rev. Lett. 95, 065502 (2005). 10.1103/PhysRevLett.95.065502
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 065502
-
-
Fujii, M.1
Zhang, X.2
Xie, H.3
Ago, H.4
Takahashi, K.5
Ikuta, T.6
Abe, H.7
Shimizu, T.8
-
3
-
-
65549111696
-
Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method
-
10.1088/0957-4484/20/14/145702
-
Q. Li, C. Liu, X. Wang, and S. Fan, Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method., Nanotechnology 20, 145702 (2009). 10.1088/0957-4484/20/14/145702
-
(2009)
Nanotechnology
, vol.20
, pp. 145702
-
-
Li, Q.1
Liu, C.2
Wang, X.3
Fan, S.4
-
4
-
-
79960644631
-
Thermal properties of graphene and nanostructured carbon materials
-
10.1038/nmat3064
-
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials., Nat. Mater. 10, 569-581 (2011). 10.1038/nmat3064
-
(2011)
Nat. Mater.
, vol.10
, pp. 569-581
-
-
Balandin, A.A.1
-
5
-
-
31544438604
-
Thermal conductance of an individual single-wall carbon nanotube above room temperature
-
10.1021/nl052145f
-
E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature., Nano Lett. 6, 96-100 (2006). 10.1021/nl052145f
-
(2006)
Nano Lett.
, vol.6
, pp. 96-100
-
-
Pop, E.1
Mann, D.2
Wang, Q.3
Goodson, K.4
Dai, H.5
-
6
-
-
0000636881
-
Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films
-
10.1063/1.127079
-
J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films., Appl. Phys. Lett. 77, 666-668 (2000). 10.1063/1.127079
-
(2000)
Appl. Phys. Lett.
, vol.77
, pp. 666-668
-
-
Hone, J.1
Llaguno, M.C.2
Nemes, N.M.3
Johnson, A.T.4
Fischer, J.E.5
Walters, D.A.6
Casavant, M.J.7
Schmidt, J.8
Smalley, R.E.9
-
7
-
-
27544445275
-
Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites
-
10.1016/j.ca2005.01.053
-
P. Gonnet, Z. Liang, E. S. Choi, R. S. Kadambala, C. Zhang, J. S. Brooks, B. Wang, and L. Kramer, Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites., Curr. Appl. Phys. 6, 119-122 (2006). 10.1016/j.cap.2005.01.053
-
(2006)
Curr. Appl. Phys.
, vol.6
, pp. 119-122
-
-
Gonnet, P.1
Liang, Z.2
Choi, E.S.3
Kadambala, R.S.4
Zhang, C.5
Brooks, J.S.6
Wang, B.7
Kramer, L.8
-
8
-
-
33751574649
-
Fast and highly anistropic thermal transport through vertically aligned carbon nanotube arrays
-
10.1063/1.2397008
-
I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, Fast and highly anistropic thermal transport through vertically aligned carbon nanotube arrays., Appl. Phys. Lett. 89, 223110 (2006). 10.1063/1.2397008
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 223110
-
-
Ivanov, I.1
Puretzky, A.2
Eres, G.3
Wang, H.4
Pan, Z.5
Cui, H.6
Jin, R.7
Howe, J.8
Geohegan, D.B.9
-
9
-
-
34248163371
-
Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique
-
10.1021/nl062689x
-
M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique., Nano Lett. 7, 900-904 (2007). 10.1021/nl062689x
-
(2007)
Nano Lett.
, vol.7
, pp. 900-904
-
-
Itkis, M.E.1
Borondics, F.2
Yu, A.3
Haddon, R.C.4
-
10
-
-
63249083543
-
Turning carbon nanotubes from exceptional heat conductors into insulators
-
10.1103/PhysRevLett.102.105901
-
R. S. Prasher, X. J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri, and P. Keblinski, Turning carbon nanotubes from exceptional heat conductors into insulators., Phys. Rev. Lett. 102, 105901 (2009). 10.1103/PhysRevLett.102.105901
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 105901
-
-
Prasher, R.S.1
Hu, X.J.2
Chalopin, Y.3
Mingo, N.4
Lofgreen, K.5
Volz, S.6
Cleri, F.7
Keblinski, P.8
-
11
-
-
33748178464
-
Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling
-
10.1103/PhysRevB.74.125403
-
H. Zhong and J. R. Lukes, Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling., Phys. Rev. B 74, 125403 (2006). 10.1103/PhysRevB.74.125403
-
(2006)
Phys. Rev. B
, vol.74
, pp. 125403
-
-
Zhong, H.1
Lukes, J.R.2
-
12
-
-
34547864711
-
Anistropic heat transfer of single-walled carbon nanotubes
-
10.1299/jtst.1.138
-
S. Maruyama, Y. Igarashi, Y. Taniguchi, and J. Shiomi, Anistropic heat transfer of single-walled carbon nanotubes., J. Thermal Sci. Technol. 1, 138-148 (2006). 10.1299/jtst.1.138
-
(2006)
J. Thermal Sci. Technol.
, vol.1
, pp. 138-148
-
-
Maruyama, S.1
Igarashi, Y.2
Taniguchi, Y.3
Shiomi, J.4
-
13
-
-
65449175984
-
Upper bound to the thermal conductivity of carbon nanotube pellets
-
10.1063/1.3088924
-
Y. Chalopin, S. Volz, and N. Mingo, Upper bound to the thermal conductivity of carbon nanotube pellets., J. Appl. Phys. 105, 084301 (2009). 10.1063/1.3088924
-
(2009)
J. Appl. Phys.
, vol.105
, pp. 084301
-
-
Chalopin, Y.1
Volz, S.2
Mingo, N.3
-
14
-
-
70349536109
-
Nanoengineering heat transfer performance at carbon nanotube interfaces
-
10.1021/nn9006237
-
Z. Xu and M. J. Buehler, Nanoengineering heat transfer performance at carbon nanotube interfaces., ACS Nano 3, 2767-2775 (2009). 10.1021/nn9006237
-
(2009)
ACS Nano
, vol.3
, pp. 2767-2775
-
-
Xu, Z.1
Buehler, M.J.2
-
15
-
-
77957560304
-
Modeling of thermal conductance at transverse CNT-CNT interfaces
-
10.1021/jp104139x
-
V. Varshney, S. S. Patnaik, A. K. Roy, and B. L. Farmer, Modeling of thermal conductance at transverse CNT-CNT interfaces., J. Phys. Chem. C 114, 16223-16228 (2010). 10.1021/jp104139x
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 16223-16228
-
-
Varshney, V.1
Patnaik, S.S.2
Roy, A.K.3
Farmer, B.L.4
-
16
-
-
74549141709
-
Contact thermal resistance between individual multiwall carbon nanotubes
-
10.1063/1.3292203
-
J. Yang, S. Waltermire, Y. Chen, A. A. Zinn, T. T. Xu, and D. Li, Contact thermal resistance between individual multiwall carbon nanotubes., Appl. Phys. Lett. 96, 023109 (2010). 10.1063/1.3292203
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 023109
-
-
Yang, J.1
Waltermire, S.2
Chen, Y.3
Zinn, A.A.4
Xu, T.T.5
Li, D.6
-
17
-
-
77953143693
-
Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials
-
10.1103/PhysRevLett.104.215902
-
A. N. Volkov and L. V. Zhigilei, Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials., Phys. Rev. Lett. 104, 215902 (2010). 10.1103/PhysRevLett.104.215902
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 215902
-
-
Volkov, A.N.1
Zhigilei, L.V.2
-
18
-
-
42749100975
-
Contact resistance in percolating networks
-
10.1103/PhysRevB.69.184201
-
P. Keblinski and F. Cleri, Contact resistance in percolating networks., Phys. Rev. B 69, 184201 (2004). 10.1103/PhysRevB.69.184201
-
(2004)
Phys. Rev. B
, vol.69
, pp. 184201
-
-
Keblinski, P.1
Cleri, F.2
-
19
-
-
77950255047
-
Mesoscopic interaction potential for carbon nanotubes of arbitrary length and orientation
-
10.1021/jp906142h
-
A. N. Volkov and L. V. Zhigilei, Mesoscopic interaction potential for carbon nanotubes of arbitrary length and orientation., J. Phys. Chem. C 114, 5513-5531 (2010). 10.1021/jp906142h
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 5513-5531
-
-
Volkov, A.N.1
Zhigilei, L.V.2
-
20
-
-
78049323682
-
Structural stability of carbon nanotube films: The role of bending buckling
-
10.1021/nn1015902
-
A. N. Volkov and L. V. Zhigilei, Structural stability of carbon nanotube films: The role of bending buckling., ACS Nano 4, 6187-6195 (2010). 10.1021/nn1015902
-
(2010)
ACS Nano
, vol.4
, pp. 6187-6195
-
-
Volkov, A.N.1
Zhigilei, L.V.2
-
21
-
-
28644446255
-
Mesoscopic model for dynamic simulations of carbon nanotubes
-
10.1103/PhysRevB.71.165417
-
L. V. Zhigilei, C. Wei, and D. Srivastava, Mesoscopic model for dynamic simulations of carbon nanotubes., Phys. Rev. B 71, 165417 (2005). 10.1103/PhysRevB.71.165417
-
(2005)
Phys. Rev. B
, vol.71
, pp. 165417
-
-
Zhigilei, L.V.1
Wei, C.2
Srivastava, D.3
-
22
-
-
0032119929
-
Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization
-
10.1007/s003390050734
-
A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodríguez-Macías, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization., Appl. Phys. A: Mater. Sci. Process 67, 29-37 (1998). 10.1007/s003390050734
-
(1998)
Appl. Phys. A: Mater. Sci. Process
, vol.67
, pp. 29-37
-
-
Rinzler, A.G.1
Liu, J.2
Dai, H.3
Nikolaev, P.4
Huffman, C.B.5
Rodríguez- Macías, F.J.6
Boul, P.J.7
Lu, A.H.8
Heymann, D.9
Colbert, D.T.10
Lee, R.S.11
Fischer, J.E.12
Rao, A.M.13
Eklund, P.C.14
Smalley, R.E.15
-
23
-
-
0036109170
-
Preparation, characterization and applications of free-standing single walled carbon nanotube thin films
-
10.1039/b201570f
-
F. Hennrich, S. Lebedkin, S. Malik, J. Tracy, M. Barczewski, H. Rösner, and M. Kappes, Preparation, characterization and applications of free-standing single walled carbon nanotube thin films., Phys. Chem. Chem. Phys. 4, 2273-2277 (2002). 10.1039/b201570f
-
(2002)
Phys. Chem. Chem. Phys.
, vol.4
, pp. 2273-2277
-
-
Hennrich, F.1
Lebedkin, S.2
Malik, S.3
Tracy, J.4
Barczewski, M.5
Rösner, H.6
Kappes, M.7
-
24
-
-
34250637001
-
High-strength and multifunctional macroscopic fabric of single-walled carbon nanotubes
-
10.1002/adma.200602140
-
S. Wang, Z. Liang, B. Wang, and C. Zhang, High-strength and multifunctional macroscopic fabric of single-walled carbon nanotubes., Adv. Mater. 19, 1257-1261 (2007). 10.1002/adma.200602140
-
(2007)
Adv. Mater.
, vol.19
, pp. 1257-1261
-
-
Wang, S.1
Liang, Z.2
Wang, B.3
Zhang, C.4
-
25
-
-
0343341620
-
Thermal conductivity of carbon nanotubes
-
10.1088/0957-4484/11/2/305
-
J. Che, T. aǧιn, and W. A. Goddard III, Thermal conductivity of carbon nanotubes., Nanotechnology 11, 65-69 (2000). 10.1088/0957-4484/11/2/ 305
-
(2000)
Nanotechnology
, vol.11
, pp. 65-69
-
-
Che, J.1
Aǧin, T.2
Goddard III, W.A.3
-
26
-
-
0036776491
-
A molecular dynamics simulation of heat conduction in finite length SWNTs
-
10.1016/S0921-4526(02)00898-0
-
S. Maruyama, A molecular dynamics simulation of heat conduction in finite length SWNTs., Physica B 323, 193-195 (2002). 10.1016/S0921-4526(02)00898-0
-
(2002)
Physica B
, vol.323
, pp. 193-195
-
-
Maruyama, S.1
-
27
-
-
25444507424
-
Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature
-
10.1063/1.2036967
-
G. Zhang and B. Li, Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature., J. Chem. Phys. 123, 114714 (2005). 10.1063/1.2036967
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 114714
-
-
Zhang, G.1
Li, B.2
-
28
-
-
0000455770
-
Excluded volume and its relation to the onset of percolation
-
10.1103/PhysRevB.30.3933
-
I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Excluded volume and its relation to the onset of percolation., Phys. Rev. B 30, 3933-3943 (1984). 10.1103/PhysRevB.30.3933
-
(1984)
Phys. Rev. B
, vol.30
, pp. 3933-3943
-
-
Balberg, I.1
Anderson, C.H.2
Alexander, S.3
Wagner, N.4
-
29
-
-
34247577209
-
Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-code models
-
10.1103/PhysRevE.75.041120
-
L. Berhan and A. M. Sastry, Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-code models., Phys. Rev. E 75, 041120 (2007). 10.1103/PhysRevE.75.041120
-
(2007)
Phys. Rev. e
, vol.75
, pp. 041120
-
-
Berhan, L.1
Sastry, A.M.2
-
31
-
-
0345870297
-
Reconsideration of continuum percolation of isotropically oriented sticks in three dimensions
-
V for smaller R T / L T [Z. Néda, R. Florian, and Y. Brechet, Reconsideration of continuum percolation of isotropically oriented sticks in three dimensions., Phys. Rev. E 59, 3717-3719 (1999)]. 10.1103/PhysRevE.59.3717
-
(1999)
Phys. Rev. e
, vol.59
, pp. 3717-3719
-
-
Néda, Z.1
Florian, R.2
Brechet, Y.3
|