-
1
-
-
0002349411
-
-
Moscow State Univ. (in Russian). Kluwer Academic Publication, Dordrecht, Boston, London (1992) (in English)
-
Archangel'skii, A. V.: Topological Spaces of Functions, Moscow State Univ. (1989) (in Russian). Kluwer Academic Publication, Dordrecht, Boston, London (1992) (in English).
-
(1989)
Topological Spaces of Functions
-
-
Archangel'skii, A.V.1
-
2
-
-
34250533132
-
Fréchet differentiability of convex functions
-
Asplund E.: Fréchet differentiability of convex functions. Acta Math. 121, 31-47 (1968).
-
(1968)
Acta Math.
, vol.121
, pp. 31-47
-
-
Asplund, E.1
-
3
-
-
70349881638
-
The approximate fixed point property in Hausdorff topological vector spaces and applications
-
Barroso C. S.: The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete Cont. Dyn. Syst. 25, 467-479 (2009).
-
(2009)
Discrete Cont. Dyn. Syst.
, vol.25
, pp. 467-479
-
-
Barroso, C.S.1
-
4
-
-
73649107804
-
On the weak approximate fixed point property
-
Barroso C. S., Lin P.-K.: On the weak approximate fixed point property. J. Math. Anal. Appl. 365, 171-175 (2010).
-
(2010)
J. Math. Anal. Appl.
, vol.365
, pp. 171-175
-
-
Barroso, C.S.1
Lin, P.-K.2
-
5
-
-
12144287277
-
Weak compactness and fixed point property for affine mappings
-
Domínguez Benavides T., Japon Pineda M. A., Prus S.: Weak compactness and fixed point property for affine mappings. J. Funct. Anal. 209(1), 1-15 (2004).
-
(2004)
J. Funct. Anal.
, vol.209
, Issue.1
, pp. 1-15
-
-
Domínguez Benavides, T.1
Japon Pineda, M.A.2
Prus, S.3
-
6
-
-
56449120342
-
A renorming of some nonseparable Banach spaces with the fixed point property
-
Domínguez Benavides T.: A renorming of some nonseparable Banach spaces with the fixed point property. J. Math. Anal. Appl. 350, 525-530 (2009).
-
(2009)
J. Math. Anal. Appl.
, vol.350
, pp. 525-530
-
-
Domínguez Benavides, T.1
-
7
-
-
0010761868
-
Pointwise compact sets of Baire measurable functions
-
Bourgain J., Fremlin D. H., Talagrand M.: Pointwise compact sets of Baire measurable functions. Am. J. Math. 100, 845-886 (1978).
-
(1978)
Am. J. Math.
, vol.100
, pp. 845-886
-
-
Bourgain, J.1
Fremlin, D.H.2
Talagrand, M.3
-
8
-
-
10744223169
-
Approximate fixed point theorems in Banach spaces with applications in game theory
-
Brânzei R., Morgan J., Scalzo V.: Approximate fixed point theorems in Banach spaces with applications in game theory. J. Math. Anal. Appl. 285, 619-628 (2003).
-
(2003)
J. Math. Anal. Appl.
, vol.285
, pp. 619-628
-
-
Brânzei, R.1
Morgan, J.2
Scalzo, V.3
-
11
-
-
0001005511
-
Sur un théorème minimax
-
Fan K.: Sur un théorème minimax. C. R. Acad. Sci. Paris 259, 3925-3928 (1964).
-
(1964)
C. R. Acad. Sci. Paris
, vol.259
, pp. 3925-3928
-
-
Fan, K.1
-
13
-
-
4244110959
-
On γ-almost fixed point theorems. The single-valued case
-
Idzik A.: On γ-almost fixed point theorems. The single-valued case. Bull. Polish. Acad. Sci. Math. 35, 461-464 (1987).
-
(1987)
Bull. Polish. Acad. Sci. Math.
, vol.35
, pp. 461-464
-
-
Idzik, A.1
-
14
-
-
0000538856
-
Almost fixed point theorems
-
Idzik A.: Almost fixed point theorems. Proc. Am. Math. Soc. 104, 779-784 (1988).
-
(1988)
Proc. Am. Math. Soc.
, vol.104
, pp. 779-784
-
-
Idzik, A.1
-
15
-
-
0039097440
-
Some fixed point theorems for nonconvex spaces
-
Jafari F., Sehgal V. M.: Some fixed point theorems for nonconvex spaces. Int. J. Math. & Math. Sci. 21, 133-138 (1998).
-
(1998)
Int. J. Math. & Math. Sci.
, vol.21
, pp. 133-138
-
-
Jafari, F.1
Sehgal, V.M.2
-
16
-
-
0000094452
-
Some remarks on weakly compactly generated Banach spaces
-
Johnson W. B., Lindenstrauss J.: Some remarks on weakly compactly generated Banach spaces. Israel J. Math. 17, 219-230 (1974).
-
(1974)
Israel J. Math.
, vol.17
, pp. 219-230
-
-
Johnson, W.B.1
Lindenstrauss, J.2
-
17
-
-
0002011394
-
Valdivia compact spaces in topology and Banach space theory
-
Kalenda O. F. K.: Valdivia compact spaces in topology and Banach space theory. Extracta Math. 15(1), 1-85 (2000).
-
(2000)
Extracta Math.
, vol.15
, Issue.1
, pp. 1-85
-
-
Kalenda, O.F.K.1
-
18
-
-
77956186299
-
1 have weak approximate fixed point property
-
1 have weak approximate fixed point property. J. Math. Anal. Appl. 373, 134-137 (2011).
-
(2011)
J. Math. Anal. Appl.
, vol.373
, pp. 134-137
-
-
Kalenda, O.F.K.1
-
20
-
-
84968494825
-
Convex sets with the Lipschitz fixed point property are compact
-
Lin P.-K., Sternfeld Y.: Convex sets with the Lipschitz fixed point property are compact. Proc. Am. Math. Soc. 93, 633-639 (1985).
-
(1985)
Proc. Am. Math. Soc.
, vol.93
, pp. 633-639
-
-
Lin, P.-K.1
Sternfeld, Y.2
-
21
-
-
0013520986
-
A fixed point theorem for demicontinuous pseudocontractions in Hilbert spaces
-
Moloney J., Weng X.: A fixed point theorem for demicontinuous pseudocontractions in Hilbert spaces. Studia Math. 116(3), 217-223 (1995).
-
(1995)
Studia Math.
, vol.116
, Issue.3
, pp. 217-223
-
-
Moloney, J.1
Weng, X.2
-
22
-
-
84972577815
-
Banach spacess which are Asplund spaces
-
Namioka I., Phelps R. R.: Banach spacess which are Asplund spaces. Duke Math. J. 42(4), 735-750 (1975).
-
(1975)
Duke Math. J.
, vol.42
, Issue.4
, pp. 735-750
-
-
Namioka, I.1
Phelps, R.R.2
-
25
-
-
0003287866
-
On locally uniformly convex and differentiable norms in certain non-separable Banach spaces
-
Troyanski S. L.: On locally uniformly convex and differentiable norms in certain non-separable Banach spaces. Studia Math. 37, 173-180 (1971).
-
(1971)
Studia Math.
, vol.37
, pp. 173-180
-
-
Troyanski, S.L.1
|