-
1
-
-
84966255980
-
A fixed point free nonexpansive map
-
D.E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981) 423-424.
-
(1981)
Proc. Amer. Math. Soc.
, vol.82
, pp. 423-424
-
-
Alspach, D.E.1
-
2
-
-
0004113273
-
-
Birkhäuser Verlag, Basel, Boston, Berlin
-
J.M. Ayerbe, T. Dominguez Benavides, G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser Verlag, Basel, Boston, Berlin, 1997.
-
(1997)
Measures of Noncompactness in Metric Fixed Point Theory
-
-
Ayerbe, J.M.1
Dominguez Benavides, T.2
Lopez Acedo, G.3
-
5
-
-
0003280879
-
M-ideals in Banach spaces and Banach algebras
-
Springer, Berlin
-
P. Harmand, D. Werner, W. Werner, in: M-ideals in Banach spaces and Banach algebras, Lectures Notes in Mathematics, Vol. 1547, Springer, Berlin, 1993.
-
(1993)
Lectures Notes in Mathematics
, vol.1547
-
-
Harmand, P.1
Werner, D.2
Werner, D.3
-
6
-
-
0001232958
-
A non-reflexive Banach space isometric to its second conjugate
-
R.C. James, A non-reflexive Banach space isometric to its second conjugate, Proc. Natl. Acad. Sci. USA 37 (1951) 174-177.
-
(1951)
Proc. Natl. Acad. Sci. USA
, vol.37
, pp. 174-177
-
-
James, R.C.1
-
7
-
-
0001370817
-
Basic sequences, biorthogonal systems and norming sets in Banach and Frechet spaces
-
M.I. Kadec, A. Pełczyński, Basic sequences, biorthogonal systems and norming sets in Banach and Frechet spaces, Studia Math. 25 (1965) 297-323.
-
(1965)
Studia Math.
, vol.25
, pp. 297-323
-
-
Kadec, M.I.1
Pełczyński, A.2
-
8
-
-
0001763524
-
On uniform Opial condition and uniform Kadec-Klee property in Banach and metric spaces
-
M.A. Khamsi, On uniform Opial condition and uniform Kadec-Klee property in Banach and metric spaces, Nonlinear Anal. Theory Methods Appl. 26 (1996) 1733-1748.
-
(1996)
Nonlinear Anal. Theory Methods Appl.
, vol.26
, pp. 1733-1748
-
-
Khamsi, M.A.1
-
9
-
-
84966241661
-
1 is uniformly Kadec Klee
-
1 is uniformly Kadec Klee, Proc. Amer. Math. Soc. 109 (1990) 71-77.
-
(1990)
Proc. Amer. Math. Soc.
, vol.109
, pp. 71-77
-
-
Lennard, C.1
-
10
-
-
84968494825
-
Convex sets with the Lipschitz fixed point property are compact
-
P.K. Lin, Y. Sternfeld, Convex sets with the Lipschitz fixed point property are compact, Proc. Amer. Math. Soc. 93 (1985) 633-639.
-
(1985)
Proc. Amer. Math. Soc.
, vol.93
, pp. 633-639
-
-
Lin, P.K.1
Sternfeld, Y.2
-
11
-
-
0003568115
-
-
Springer, Verlag, Berlin, New York
-
J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Sequence Spaces, Springer, Verlag, Berlin, New York, 1977.
-
(1977)
Classical Banach Spaces I, Sequence Spaces
-
-
Lindenstrauss, J.1
Tzafriri, L.2
-
14
-
-
84956131996
-
Geometric theory of Banach spaces. Part I, The theory of basis and minimal systems
-
Translated from Uspekhi Mat. Nauk 25 (1970) 113-173
-
V. D. Milman, Geometric theory of Banach spaces. Part I, The theory of basis and minimal systems, Russian Math. Surveys 25 (1970) 111-170 translated from Uspekhi Mat. Nauk 25 (1970) 113-173.
-
(1970)
Russian Math. Surveys
, vol.25
, pp. 111-170
-
-
Milman, V.D.1
-
15
-
-
0007607548
-
Some properties of non-reflexive Banach spaces
-
Russian
-
D.P. Milman, V.D. Milman, Some properties of non-reflexive Banach spaces, Mat. Sb. 65 (1964) 486-497 Russian.
-
(1964)
Mat. Sb.
, vol.65
, pp. 486-497
-
-
Milman, D.P.1
Milman, V.D.2
-
16
-
-
0010977606
-
L-embedded Banach spaces and measure topology
-
To appear
-
H. Pfitzner, L-embedded Banach spaces and measure topology, Israel J. Math., to appear.
-
Israel J. Math.
-
-
Pfitzner, H.1
|