메뉴 건너뛰기




Volumn 13, Issue 4, 2012, Pages 437-447

Introducing the At-Risk Average Causal Effect with Application to HealthWise South Africa

Author keywords

Causal inference; Cigarette smoking initiation; Leisure boredom; Marginal Structural Models

Indexed keywords

ADOLESCENT; ARTICLE; CHILD BEHAVIOR; EPIDEMIOLOGY; FEMALE; HEALTH PROMOTION; HUMAN; LONGITUDINAL STUDY; MALE; METHODOLOGY; RISK ASSESSMENT; SOUTH AFRICA; STATISTICAL MODEL;

EID: 84864383521     PISSN: 13894986     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11121-011-0271-0     Document Type: Article
Times cited : (7)

References (24)
  • 2
    • 16244397038 scopus 로고    scopus 로고
    • Adjusting for time-varying confounding in survival analysis
    • Barber, J. S., Murphy, S. A., & Verbitsky, N. (2004). Adjusting for time-varying confounding in survival analysis. Sociological Methodology, 34, 163-192.
    • (2004) Sociological Methodology , vol.34 , pp. 163-192
    • Barber, J.S.1    Murphy, S.A.2    Verbitsky, N.3
  • 3
    • 33646480615 scopus 로고    scopus 로고
    • Assessing the total effect of time-varying predictors in prevention research
    • Bray, B. C., Almirall, D., Zimmerman, R. S., Lynam, D., & Murphy, S. A. (2006). Assessing the total effect of time-varying predictors in prevention research. Prevention Science, 7, 1-17.
    • (2006) Prevention Science , vol.7 , pp. 1-17
    • Bray, B.C.1    Almirall, D.2    Zimmerman, R.S.3    Lynam, D.4    Murphy, S.A.5
  • 4
    • 1442326306 scopus 로고    scopus 로고
    • Sensitivity analysis for unmeasured confounding assuming a marginal structural model for repeated measures
    • Brumback, B. A., Hernan, M. A., Hanseuse, S. J. P. S., & Robins, J. M. (2004). Sensitivity analysis for unmeasured confounding assuming a marginal structural model for repeated measures. Statistics in Medicine, 23, 749-767.
    • (2004) Statistics in Medicine , vol.23 , pp. 749-767
    • Brumback, B.A.1    Hernan, M.A.2    Hanseuse, S.J.P.S.3    Robins, J.M.4
  • 7
    • 51749124303 scopus 로고    scopus 로고
    • Constructing inverse probability weights for marginal structural models
    • Cole, S. R., & Hernan, M. A. (2008). Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology, 168, 656-664.
    • (2008) American Journal of Epidemiology , vol.168 , pp. 656-664
    • Cole, S.R.1    Hernan, M.A.2
  • 9
    • 27144474493 scopus 로고    scopus 로고
    • Effects of kindergarten retention policy on children's cognitive growth in reading and mathematics
    • Hong, G., & Raudenbush, S. W. (2005). Effects of kindergarten retention policy on children's cognitive growth in reading and mathematics. Educational Evaluation and Policy Analysis, 27, 205-224.
    • (2005) Educational Evaluation and Policy Analysis , vol.27 , pp. 205-224
    • Hong, G.1    Raudenbush, S.W.2
  • 10
    • 33748876160 scopus 로고    scopus 로고
    • Evaluating kindergarten retention policy: A case study of causal inference for multi-level observational data
    • Hong, G., & Raudenbush, S. W. (2006). Evaluating kindergarten retention policy: A case study of causal inference for multi-level observational data. Journal of the American Statistical Association, 101, 901-910.
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 901-910
    • Hong, G.1    Raudenbush, S.W.2
  • 11
    • 4944223958 scopus 로고    scopus 로고
    • Causal inference with general treatment regimes: Generalizing the propensity score
    • Imai, K., & van Dyk, D. A. (2004). Causal inference with general treatment regimes: Generalizing the propensity score. Journal of the American Statistical Association, 99, 854-866.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 854-866
    • Imai, K.1    van Dyk, D.A.2
  • 12
    • 0000724291 scopus 로고    scopus 로고
    • The role of the propensity score in estimating dose-response functions
    • Imbens, G. W. (2000). The role of the propensity score in estimating dose-response functions. Biometrika, 83, 706-710.
    • (2000) Biometrika , vol.83 , pp. 706-710
    • Imbens, G.W.1
  • 16
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins, J. M., Hernan, M. A., & Brumback, B. A. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 11, 550-560.
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Hernan, M.A.2    Brumback, B.A.3
  • 17
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 18
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 79, 516-524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 19
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
    • Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39, 33-38.
    • (1985) The American Statistician , vol.39 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 20
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688-701.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 21
    • 14944344423 scopus 로고    scopus 로고
    • Causal inference using potential outcomes: Design, modeling, decisions
    • Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100, 322-331.
    • (2005) Journal of the American Statistical Association , vol.100 , pp. 322-331
    • Rubin, D.B.1
  • 23
    • 57749105474 scopus 로고    scopus 로고
    • Average causal effects from non-randomized studies: A practical guide and simulated example
    • Schafer, J. L., & Kang, J. D. Y. (2008). Average causal effects from non-randomized studies: A practical guide and simulated example. Psychological Methods, 13, 279-313.
    • (2008) Psychological Methods , vol.13 , pp. 279-313
    • Schafer, J.L.1    Kang, J.D.Y.2
  • 24
    • 69949103782 scopus 로고    scopus 로고
    • A simple g-computation algorithm to quantify the causal effect of a secondary illness on the progression of a chronic disease
    • van der Wal, W. M., Prins, M., Lumbreras, B., & Geskus, R. B. (2009). A simple g-computation algorithm to quantify the causal effect of a secondary illness on the progression of a chronic disease. Statistics in Medicine, 28, 2325-2337.
    • (2009) Statistics in Medicine , vol.28 , pp. 2325-2337
    • van der Wal, W.M.1    Prins, M.2    Lumbreras, B.3    Geskus, R.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.