-
1
-
-
52949089291
-
Variational iteration method for solving the multi-pantograph delay equation
-
Z.-H. Yu Variational iteration method for solving the multi-pantograph delay equation Phys. Lett. A 372 2008 6475 6479
-
(2008)
Phys. Lett. A
, vol.372
, pp. 6475-6479
-
-
Yu, Z.-H.1
-
2
-
-
3242732129
-
Properties of analytic solution and numerical solution of multi-pantograph equation
-
M.Z. Liu, and D. Li Properties of analytic solution and numerical solution of multi-pantograph equation Appl. Math. Comput. 155 2004 853 871
-
(2004)
Appl. Math. Comput.
, vol.155
, pp. 853-871
-
-
Liu, M.Z.1
Li, D.2
-
3
-
-
39049148015
-
Approximate solution of multi-pantograph equation with variable coefficients
-
M. Sezer, S. Yalçinbaş, and N. Şahin Approximate solution of multi-pantograph equation with variable coefficients J. Comput. Appl. Math. 214 2008 406 416
-
(2008)
J. Comput. Appl. Math.
, vol.214
, pp. 406-416
-
-
Sezer, M.1
Yalçinbaş, S.2
Şahin, N.3
-
4
-
-
84864288822
-
A new method of solving singular multi-pantograph delay differential equation in reproducing kernel space
-
P. Du, and F. Geng A new method of solving singular multi-pantograph delay differential equation in reproducing kernel space Appl. Math. Sci. 2 27 2008 1299 1305
-
(2008)
Appl. Math. Sci.
, vol.2
, Issue.27
, pp. 1299-1305
-
-
Du, P.1
Geng, F.2
-
5
-
-
27944439311
-
The Adomian decomposition method for solving delay differential equation
-
D.J. Evans, and K.R. Raslan The Adomian decomposition method for solving delay differential equation Int. J. Comput. Math. 82 1 2005 49 54
-
(2005)
Int. J. Comput. Math.
, vol.82
, Issue.1
, pp. 49-54
-
-
Evans, D.J.1
Raslan, K.R.2
-
6
-
-
78049302587
-
An efficient algorithm for solving generalized pantograph equations with linear functional argument
-
Elçin Yusufolu An efficient algorithm for solving generalized pantograph equations with linear functional argument Appl. Math. Comput. 217 7 2010 3591 3595
-
(2010)
Appl. Math. Comput.
, vol.217
, Issue.7
, pp. 3591-3595
-
-
Yusufolu, E.1
-
7
-
-
46249090052
-
A Taylor polynomial approach for solving generalized pantograph equations with nonhomogeneous term
-
M. Sezer, S. Yalçinbaş, and M. Gülsu A Taylor polynomial approach for solving generalized pantograph equations with nonhomogeneous term Int. J. Comput. Math. 85 7 2008 1055 1063
-
(2008)
Int. J. Comput. Math.
, vol.85
, Issue.7
, pp. 1055-1063
-
-
Sezer, M.1
Yalçinbaş, S.2
Gülsu, M.3
-
8
-
-
70350575223
-
Variational iteration method for solving a generalized pantograph equation
-
A. Saadatmandi, and M. Dehghan Variational iteration method for solving a generalized pantograph equation Comput. Math. Appl. 58 11-12 2009 2190 2196
-
(2009)
Comput. Math. Appl.
, vol.58
, Issue.1112
, pp. 2190-2196
-
-
Saadatmandi, A.1
Dehghan, M.2
-
9
-
-
84860129388
-
A Bessel collocation method for numerical solution of generalized pantograph equations, Numer
-
doi:10.1002/num.20660 (in press)
-
Ş. Yüzbaş, N. Şahin, M. Sezer, A Bessel collocation method for numerical solution of generalized pantograph equations, Numer. Methods Partial Differential Equations (2011), (doi:10.1002/num.20660) (in press).
-
(2011)
Methods Partial Differential Equations
-
-
Yüzbaş, S.1
-
10
-
-
84864277650
-
The Taylor method for numerical solution of fuzzy generalized pantograph equations with linear functional argument
-
N. Mikaeilvand, and L. Hossieni The Taylor method for numerical solution of fuzzy generalized pantograph equations with linear functional argument Int. J. Ind. Math. 2 2 2010 115 127
-
(2010)
Int. J. Ind. Math.
, vol.2
, Issue.2
, pp. 115-127
-
-
Mikaeilvand, N.1
Hossieni, L.2
-
11
-
-
33750956351
-
A Taylor method for numerical solution of generalized pantograph equations with linear functional argument
-
M. Sezer, and A. Akyüz-Daşcolu A Taylor method for numerical solution of generalized pantograph equations with linear functional argument J. Comput. Appl. Math. 200 2007 217 225
-
(2007)
J. Comput. Appl. Math.
, vol.200
, pp. 217-225
-
-
Sezer, M.1
Akyüz-Daşcolu, A.2
-
12
-
-
78649980140
-
Discontinuous Galerkin methods for delay differential equations of pantograph type
-
H. Brunner, Q. Huang, and H. Xie Discontinuous Galerkin methods for delay differential equations of pantograph type SIAM J. Numer. Anal. 48 2010 1944 1967
-
(2010)
SIAM J. Numer. Anal.
, vol.48
, pp. 1944-1967
-
-
Brunner, H.1
Huang, Q.2
Xie, H.3
-
13
-
-
79955876577
-
Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases
-
Ş. Yüzbaş, N. Şahin, and M. Sezer Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases Comput. Math. Appl. 61 10 2011 3079 3096
-
(2011)
Comput. Math. Appl.
, vol.61
, Issue.10
, pp. 3079-3096
-
-
Yüzbaş, Ş.1
Şahin, N.2
Sezer, M.3
-
14
-
-
80052270910
-
Bessel matrix method for solving high-order linear Fredholm integro-differential equations
-
Ş. Yüzbaş, N. Şahin, and M. Sezer Bessel matrix method for solving high-order linear Fredholm integro-differential equations J. Adv. Res. Appl. Math. 3 2 2011 23 47
-
(2011)
J. Adv. Res. Appl. Math.
, vol.3
, Issue.2
, pp. 23-47
-
-
Yüzbaş, Ş.1
Şahin, N.2
Sezer, M.3
-
15
-
-
79960173273
-
A collocation approach for solving systems of linear Volterra integral equations with variable coefficients
-
N. Şahin, Ş. Yüzbaş, and M. Gülsu A collocation approach for solving systems of linear Volterra integral equations with variable coefficients Comput. Math. Appl. 62 2 2011 755 769
-
(2011)
Comput. Math. Appl.
, vol.62
, Issue.2
, pp. 755-769
-
-
Şahin, N.1
Yüzbaş, Ş.2
Gülsu, M.3
-
16
-
-
80051792696
-
A collocation approach to solve a class of Lane-Emden type equations
-
Ş. Yüzbaş, and M. Sezer A collocation approach to solve a class of Lane-Emden type equations J. Adv. Res. Appl. Math. 3 2 2011 58 73
-
(2011)
J. Adv. Res. Appl. Math.
, vol.3
, Issue.2
, pp. 58-73
-
-
Yüzbaş, Ş.1
Sezer, M.2
-
17
-
-
80051787613
-
A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients
-
Ş. Yüzbaş, N. Şahin, and M. Sezer A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients J. Adv. Res. Differ. Equ. 3 1 2011 81 101
-
(2011)
J. Adv. Res. Differ. Equ.
, vol.3
, Issue.1
, pp. 81-101
-
-
Yüzbaş, Ş.1
Şahin, N.2
Sezer, M.3
-
20
-
-
25144500559
-
Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation
-
S. Shahmorad Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation Appl. Math. Comput. 167 2005 1418 1429
-
(2005)
Appl. Math. Comput.
, vol.167
, pp. 1418-1429
-
-
Shahmorad, S.1
|