-
1
-
-
74449090235
-
Homotopy analysis method for solving fractional Lorenz system
-
doi: 10.1016/j.cnsns.2009.08.005
-
A.K. Alomari, M.S.M. Noorani, R. Nazar, C.P. Li. Homotopy analysis method for solving fractional Lorenz system. Commun Nonlinear Sci. Numer. Simul., 2010, 15: 1864-1872, doi: 10.1016/j.cnsns.2009.08.005.
-
(2010)
Commun Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 1864-1872
-
-
Alomari, A.K.1
Noorani, M.S.M.2
Nazar, R.3
Li, C.P.4
-
2
-
-
54949109084
-
Numerical experiments on the hyperchaotic Chen system by the Adomian decomposition method
-
M.M. Al-Sawalha, M.S. Noorani. Numerical experiments on the hyperchaotic Chen system by the Adomian decomposition method. Int. J. Comput. Methods. 2008, 5: 403-412.
-
(2008)
Int. J. Comput. Methods.
, vol.5
, pp. 403-412
-
-
Al-Sawalha, M.M.1
Noorani, M.S.2
-
3
-
-
65449148390
-
On accuracy of Adomian decomposition method for hyperchaotic Rossler system
-
M.M. Al-Sawalha, M.S. Noorani, I. Hashim. On accuracy of Adomian decomposition method for hyperchaotic Rossler system. Chaos, Solitons & Fractals, 2009, 40: 1801-1807.
-
(2009)
Chaos, Solitons & Fractals
, vol.40
, pp. 1801-1807
-
-
Al-Sawalha, M.M.1
Noorani, M.S.2
Hashim, I.3
-
4
-
-
55549140509
-
Application of the differential transformation method for the solution of the hyperchaotic Rossler system
-
M.M. Al-Sawalha, M.S. Noorani. Application of the differential transformation method for the solution of the hyperchaotic Rossler system. Commun. Nonlinear Sci. Numer. Simul., 2009, 14: 1509-1514.
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 1509-1514
-
-
Al-Sawalha, M.M.1
Noorani, M.S.2
-
5
-
-
84864230899
-
Analytic approximations for fractional-order predator-Prey and rabies models
-
K. Hemida, M. Saad. Analytic approximations for fractional-order predator-Prey and rabies models. Journal of Advanced Research in Applied Mathematics, 2009, 1(1): 53-61.
-
(2009)
Journal of Advanced Research in Applied Mathematics
, vol.1
, Issue.1
, pp. 53-61
-
-
Hemida, K.1
Saad, M.2
-
6
-
-
84864272065
-
Application of the homotopy analysis method to fractional order gas dynamics equation
-
doi: 10.5373/jaram.264.102909
-
K. Hemida, M. Saad. Application of the homotopy analysis method to fractional order gas dynamics equation. Journal of Advanced Research in Applied Mathematics, 2010, 2(1): 39-45, doi: 10.5373/jaram.264.102909.
-
(2010)
Journal of Advanced Research in Applied Mathematics
, vol.2
, Issue.1
, pp. 39-45
-
-
Hemida, K.1
Saad, M.2
-
7
-
-
84863633692
-
Numerical simulation of the generalized Huxley equation by homotopy analysis method
-
K. Hemida, M. Saad. Numerical simulation of the generalized Huxley equation by homotopy analysis method. Journal of Applied Functional Analysis, 2010, 5(4): 344-350.
-
(2010)
Journal of Applied Functional Analysis
, vol.5
, Issue.4
, pp. 344-350
-
-
Hemida, K.1
Saad, M.2
-
8
-
-
67249140258
-
A fractional-order hyperchaotic system and its synchronization
-
D. Hongmin, Li Tao, W. Qionghua, Li Hongbin. A fractional-order hyperchaotic system and its synchronization. Chaos, Solitons & Fractals, 2009, 41: 962-969.
-
(2009)
Chaos, Solitons & Fractals
, vol.41
, pp. 962-969
-
-
Hongmin, D.1
Tao, L.2
Qionghua, W.3
Hongbin, L.4
-
10
-
-
0000615571
-
An approximate solution technique which does not depend upon small parameters: A special example
-
doi: 10.1016/0020-7462(94)00054-E
-
S.J. Liao. An approximate solution technique which does not depend upon small parameters: a special example. Int. J. Nonlinear Mech. 1995, 30: 371-380, doi: 10.1016/0020-7462(94)00054-E.
-
(1995)
Int. J. Nonlinear Mech.
, vol.30
, pp. 371-380
-
-
Liao, S.J.1
-
11
-
-
0031232480
-
An approximate solution technique which does not depend upon small parameters (II): An application in fluid mechanics
-
doi: 10.1016/S0020-7462(96)00101-1
-
S.J. Liao. An approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics. Int. J. Nonlinear Mech., 1997,32: 815-822, doi: 10.1016/S0020-7462(96)00101-1.
-
(1997)
Int. J. Nonlinear Mech.
, vol.32
, pp. 815-822
-
-
Liao, S.J.1
-
12
-
-
0000494305
-
An explicit, totally analytic approximation of Blasius viscous flow problems
-
doi: 10.1016/S0020-7462(98)00056-0
-
S.J. Liao. An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlinear Mech., 1999, 34(4): 759-778, doi: 10.1016/S0020-7462(98)00056-0.
-
(1999)
Int. J. Nonlinear Mech.
, vol.34
, Issue.4
, pp. 759-778
-
-
Liao, S.J.1
-
14
-
-
0141961626
-
On the homotopy analysis method for nonlinear problems
-
doi: 10.1016/S0096-3003(02)00790-7
-
S.J. Liao. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput., 2004, 147: 499-513. doi: 10.1016/S0096-3003(02)00790-7.
-
(2004)
Appl. Math. Comput.
, vol.147
, pp. 499-513
-
-
Liao, S.J.1
-
15
-
-
55549136027
-
Notes on the homotopy analysis method: Some defintions and theorems
-
doi: 10.1016/j.cnsns.2008.04.013
-
S.J. Liao. Notes on the homotopy analysis method: Some defintions and theorems. Commun. Nonlinear Sci. Numer. Simul., 2009, 14: 983-997, doi: 10.1016/j.cnsns.2008.04.013.
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 983-997
-
-
Liao, S.J.1
-
16
-
-
0003548431
-
-
Preprint Series A08-98, Fachbereich Mathematik and Informatic, Freie Universitat, Berlin
-
Y. Luchko, R. Gorenflo. The initial-value problem for some fractional differential equations with Caputo derivative. Preprint Series A08-98, Fachbereich Mathematik and Informatic, Freie Universitat, Berlin, 1998.
-
(1998)
The initial-value problem for some fractional differential equations with Caputo derivative
-
-
Luchko, Y.1
Gorenflo, R.2
-
19
-
-
0003797958
-
-
Academic press, San Diego-Boston-New York-London-Tokyo-Toronto
-
I. Podlubny. Fractional differential equations. Academic press, San Diego-Boston-New York-London-Tokyo-Toronto, 1999.
-
(1999)
Fractional differential equations
-
-
Podlubny, I.1
-
20
-
-
84864221318
-
Application of homotopy analysis method to fractional order generalized Huxley equation
-
Accepted in
-
M. Saad. Application of homotopy analysis method to fractional order generalized Huxley equation. Accepted in: Journal of Applied Functional Analysis.
-
Journal of Applied Functional Analysis
-
-
Saad, M.1
-
21
-
-
84863627474
-
Analytic approximations for fractional-order Newton-Leipnik system
-
M. Saad. Analytic approximations for fractional-order Newton-Leipnik system. Journal of Advanced Research in Scientific Computing, 2011, 3(2): 56-89.
-
(2011)
Journal of Advanced Research in Scientific Computing
, vol.3
, Issue.2
, pp. 56-89
-
-
Saad, M.1
|