-
4
-
-
34247212711
-
Remarks on fractional derivatives
-
Li C.P., and Deng W.H. Remarks on fractional derivatives. Appl Math Comput 187 (2007) 777-784
-
(2007)
Appl Math Comput
, vol.187
, pp. 777-784
-
-
Li, C.P.1
Deng, W.H.2
-
5
-
-
0037081673
-
Analysis of fractional differential equations
-
Diethelm K., and Ford N.J. Analysis of fractional differential equations. J Math Anal Appl 265 (2002) 229-248
-
(2002)
J Math Anal Appl
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
6
-
-
0036650479
-
A predictor corrector approach for the numerical solution of fractional differential equations
-
Diethelm K., Ford N.J., and Freed A.D. A predictor corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29 (2002) 3-22
-
(2002)
Nonlinear Dyn
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
7
-
-
1842832060
-
Chaos in Chen's system with a fractional order
-
Li C.P., and Peng G.J. Chaos in Chen's system with a fractional order. Chaos, Solitons Fractals 22 (2004) 443-450
-
(2004)
Chaos, Solitons Fractals
, vol.22
, pp. 443-450
-
-
Li, C.P.1
Peng, G.J.2
-
8
-
-
67349121725
-
Fractional derivatives in complex plane
-
Li C.P., Dao X.H., and Guo P. Fractional derivatives in complex plane. Nonlinear Anal: TMA 71 (2009) 1857-1869
-
(2009)
Nonlinear Anal: TMA
, vol.71
, pp. 1857-1869
-
-
Li, C.P.1
Dao, X.H.2
Guo, P.3
-
9
-
-
65049090377
-
Numerical algorithm based on Adomian decomposition for fractional differential equations
-
Li C.P., and Wang Y.H. Numerical algorithm based on Adomian decomposition for fractional differential equations. Comput Math Appl 57 (2009) 1672-1681
-
(2009)
Comput Math Appl
, vol.57
, pp. 1672-1681
-
-
Li, C.P.1
Wang, Y.H.2
-
10
-
-
27744462122
-
Synchronization in fractional-order differential systems
-
Zhou T.S., and Li C.P. Synchronization in fractional-order differential systems. Phys D 212 (2005) 111-125
-
(2005)
Phys D
, vol.212
, pp. 111-125
-
-
Zhou, T.S.1
Li, C.P.2
-
11
-
-
33746218471
-
Solving a system of nonlinear fractional differential equations using Adomian decomposition
-
Jafari H., and Daftardar-Gejji V. Solving a system of nonlinear fractional differential equations using Adomian decomposition. J Comput Appl Math 196 (2006) 644-651
-
(2006)
J Comput Appl Math
, vol.196
, pp. 644-651
-
-
Jafari, H.1
Daftardar-Gejji, V.2
-
12
-
-
0037174280
-
Analytical approximate solutions for nonlinear fractional differential equations
-
Shawagfeh N.T. Analytical approximate solutions for nonlinear fractional differential equations. Appl Math Comput 131 (2002) 517-529
-
(2002)
Appl Math Comput
, vol.131
, pp. 517-529
-
-
Shawagfeh, N.T.1
-
13
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
Momani S., and Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys Lett A 365 (2007) 345350
-
(2007)
Phys Lett A
, vol.365
, pp. 345350
-
-
Momani, S.1
Odibat, Z.2
-
14
-
-
35348869861
-
Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order
-
Odibat Z., and Momani S. Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals. 36 (2008) 167174
-
(2008)
Chaos Solitons Fractals.
, vol.36
, pp. 167174
-
-
Odibat, Z.1
Momani, S.2
-
15
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equation of fractional order
-
Odibat Z., and Momani S. Application of variational iteration method to nonlinear differential equation of fractional order. Int J Nonlinear Sci Numer Simul 1 (2006) 271279
-
(2006)
Int J Nonlinear Sci Numer Simul
, vol.1
, pp. 271279
-
-
Odibat, Z.1
Momani, S.2
-
16
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 31 (2007) 12481255
-
(2007)
Chaos Solitons Fractals
, vol.31
, pp. 12481255
-
-
Momani, S.1
Odibat, Z.2
-
19
-
-
0000494305
-
An explicit totally analytic approximation of Blasius viscous flow problems
-
Liao S.J. An explicit totally analytic approximation of Blasius viscous flow problems. Int J Nonlinear Mech 34 (1999) 759-778
-
(1999)
Int J Nonlinear Mech
, vol.34
, pp. 759-778
-
-
Liao, S.J.1
-
20
-
-
25844456083
-
Comparison between the homotopy analysis method and homotopy perturbation method
-
Liao S.J. Comparison between the homotopy analysis method and homotopy perturbation method. Appl Math Comput 169 (2005) 1186-1194
-
(2005)
Appl Math Comput
, vol.169
, pp. 1186-1194
-
-
Liao, S.J.1
-
21
-
-
17944369480
-
A new branch of solutions of boundary-layer flows over an impermeable stretched plate
-
Liao S.J. A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int J Heat Mass Transfer 48 (2005) 2529-3259
-
(2005)
Int J Heat Mass Transfer
, vol.48
, pp. 2529-3259
-
-
Liao, S.J.1
-
22
-
-
2442526691
-
Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid
-
Hayat T., Khan M., and Asghar S. Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid. Acta Mech 168 (2004) 213-232
-
(2004)
Acta Mech
, vol.168
, pp. 213-232
-
-
Hayat, T.1
Khan, M.2
Asghar, S.3
-
23
-
-
28144444967
-
Homotopy solutions for a generalized second-grade fluid past a porous plate
-
Hayat T., and Khan M. Homotopy solutions for a generalized second-grade fluid past a porous plate. Nonlinear Dyn 42 (2005) 395-405
-
(2005)
Nonlinear Dyn
, vol.42
, pp. 395-405
-
-
Hayat, T.1
Khan, M.2
-
24
-
-
35348977016
-
The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation
-
Abbasbandy S. The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation. Phys Lett A 15 (2006) 1-6
-
(2006)
Phys Lett A
, vol.15
, pp. 1-6
-
-
Abbasbandy, S.1
-
25
-
-
34247352920
-
On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method
-
Mustafa I. On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method. Phys Lett A 365 (2007) 412-415
-
(2007)
Phys Lett A
, vol.365
, pp. 412-415
-
-
Mustafa, I.1
-
27
-
-
56049110221
-
Adaptation of homotopy analysis method for the numeric-analytic solution of Chen system
-
Alomari A.K., Noorani M.S.M., and Nazar R. Adaptation of homotopy analysis method for the numeric-analytic solution of Chen system. Commun Nonlinear Sci Numer Simulat 14 (2009) 2336-2346
-
(2009)
Commun Nonlinear Sci Numer Simulat
, vol.14
, pp. 2336-2346
-
-
Alomari, A.K.1
Noorani, M.S.M.2
Nazar, R.3
-
28
-
-
58149490845
-
Series solutions of sysytems of nonlinear fractional differential equations.
-
Bataineh A.S., Alomari A.K., Noorani M.S.M., Hashim I., and Nazar R. Series solutions of sysytems of nonlinear fractional differential equations. Acta Appl Math 105 (2009) 189-198
-
(2009)
Acta Appl Math
, vol.105
, pp. 189-198
-
-
Bataineh, A.S.1
Alomari, A.K.2
Noorani, M.S.M.3
Hashim, I.4
Nazar, R.5
-
29
-
-
34347339334
-
Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation
-
Song L., and Zhang H. Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation. Phys Lett A 367 (2007) 88-94
-
(2007)
Phys Lett A
, vol.367
, pp. 88-94
-
-
Song, L.1
Zhang, H.2
-
30
-
-
64549148828
-
Series solutions of non-linear Riccati differential equations with fractional order
-
Cang J., Tan Y., Xu H., and Liao S.J. Series solutions of non-linear Riccati differential equations with fractional order. Chaos Solitons Fractals 40 (2009) 1-19
-
(2009)
Chaos Solitons Fractals
, vol.40
, pp. 1-19
-
-
Cang, J.1
Tan, Y.2
Xu, H.3
Liao, S.J.4
-
31
-
-
56049105387
-
Analytical approximations for a population growth model with fractional order
-
Xu H. Analytical approximations for a population growth model with fractional order. Commun Nonlinear Sci Numer Simulat 14 (2009) 19781983
-
(2009)
Commun Nonlinear Sci Numer Simulat
, vol.14
, pp. 19781983
-
-
Xu, H.1
-
32
-
-
0041384356
-
Chaotic dynamics of the fractional Lorenz system
-
Grigorenko L., and Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Phys Rev Lett 91 (2003) 034101-034104
-
(2003)
Phys Rev Lett
, vol.91
, pp. 034101-034104
-
-
Grigorenko, L.1
Grigorenko, E.2
-
33
-
-
65449158498
-
The multistage homotopy-perturbation method: a powerful scheme for handling the Lorenz system
-
Chowdhury M.S.H., Hashim I., and Momani S. The multistage homotopy-perturbation method: a powerful scheme for handling the Lorenz system. Chaos Solitons Fractals 40 (2009) 1929-1937
-
(2009)
Chaos Solitons Fractals
, vol.40
, pp. 1929-1937
-
-
Chowdhury, M.S.H.1
Hashim, I.2
Momani, S.3
-
34
-
-
55549136027
-
Notes on the homotopy analysis method: some definitions and theorems
-
Liao S.J. Notes on the homotopy analysis method: some definitions and theorems. Commun Nonlinear Sci Numer Simulat 14 (2009) 983-997
-
(2009)
Commun Nonlinear Sci Numer Simulat
, vol.14
, pp. 983-997
-
-
Liao, S.J.1
-
35
-
-
0001983732
-
Fractional calculus: integral and differential equations of fractional order
-
Carpinteri A., and Mainardi F. (Eds), Springer Verlag, New York
-
Gorenflo R., and Mainardi F. Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A., and Mainardi F. (Eds). Fractals and fractional calculus in continuum mechanics (1997), Springer Verlag, New York
-
(1997)
Fractals and fractional calculus in continuum mechanics
-
-
Gorenflo, R.1
Mainardi, F.2
|