메뉴 건너뛰기




Volumn 56, Issue 12, 2012, Pages 4215-4228

The effect of the nugget on Gaussian process emulators of computer models

Author keywords

Approximation; Computer experiments; Ill conditioning; Interpolation; Kriging

Indexed keywords

APPROXIMATION; APPROXIMATION ERRORS; COMPUTER EXPERIMENT; COMPUTER MODELS; CORRELATION FUNCTION; GAUSSIAN PROCESS EMULATORS; GAUSSIAN PROCESSES; ILL-CONDITIONING; KRIGING; LEAST SQUARE; LIKELIHOOD FUNCTIONS; PENALTY TERM; PRACTICAL METHOD; REGRESSION FUNCTION; THEORETICAL INVESTIGATIONS; TYPE II; UNCERTAINTY BOUNDS;

EID: 84864129391     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2012.04.020     Document Type: Article
Times cited : (127)

References (19)
  • 1
    • 0028322792 scopus 로고
    • On the condition number of covariance matices in kriging, estimation, and simulation of random fields
    • R. Ababou, A.C. Bagtzoglou, and E.F. Wood On the condition number of covariance matices in kriging, estimation, and simulation of random fields Mathematical Geology 26 1994 99 133
    • (1994) Mathematical Geology , vol.26 , pp. 99-133
    • Ababou, R.1    Bagtzoglou, A.C.2    Wood, E.F.3
  • 2
    • 70549095831 scopus 로고    scopus 로고
    • Diagnostics for Gaussian process emulators
    • L.S. Bastos, and A. O'Hagan Diagnostics for Gaussian process emulators Technometrics 51 4 2009 425 438
    • (2009) Technometrics , vol.51 , Issue.4 , pp. 425-438
    • Bastos, L.S.1    O'Hagan, A.2
  • 7
    • 34447635745 scopus 로고    scopus 로고
    • Bayesian analysis of spatial data with measurement error
    • V. De Oliveira Bayesian analysis of spatial data with measurement error The Canadian Journal of Statistics 35 2007 283 301
    • (2007) The Canadian Journal of Statistics , vol.35 , pp. 283-301
    • De Oliveira, V.1
  • 8
    • 84859218670 scopus 로고    scopus 로고
    • Cases for the nugget in modeling computer experiments
    • R. Gramacy, and H. Lee Cases for the nugget in modeling computer experiments Statistics and Computing 22 3 2012 713 722
    • (2012) Statistics and Computing , vol.22 , Issue.3 , pp. 713-722
    • Gramacy, R.1    Lee, H.2
  • 9
    • 0007312235 scopus 로고    scopus 로고
    • Predicting the output from a complex computer code when fast approximations are available
    • M.C. Kennedy, and A. O'Hagan Predicting the output from a complex computer code when fast approximations are available Biometrika 87 2000 1 13
    • (2000) Biometrika , vol.87 , pp. 1-13
    • Kennedy, M.C.1    O'Hagan, A.2
  • 10
    • 0004220749 scopus 로고    scopus 로고
    • Monte Carlo implementation of Gaussian process models for Bayesian regression and classification
    • University of Toronto, Toronto, Ontario, Canada
    • Neal, R.M.; 1997. Monte Carlo implementation of Gaussian process models for Bayesian regression and classification, Tech. Rep. 9702, Department of statistics, University of Toronto, Toronto, Ontario, Canada.
    • (1997) Tech. Rep. 9702, Department of Statistics
    • Neal, R.M.1
  • 12
    • 2642573771 scopus 로고    scopus 로고
    • Probabilistic sensitivity analysis of complex models: A Bayesian approach
    • J.E. Oakley, and A. O'Hagan Probabilistic sensitivity analysis of complex models: a Bayesian approach Journal of the Royal Statistical Society: Series B 66 3 2004 751 769
    • (2004) Journal of the Royal Statistical Society: Series B , vol.66 , Issue.3 , pp. 751-769
    • Oakley, J.E.1    O'Hagan, A.2
  • 14
    • 78249240458 scopus 로고    scopus 로고
    • The role of the nugget term in the Gaussian process method
    • A. Giovagnoli, A.C. Atkinson, B. Torsney, C. May, Contributions to Statistics Physica-Verlag HD
    • A. Pepelyshev The role of the nugget term in the Gaussian process method A. Giovagnoli, A.C. Atkinson, B. Torsney, C. May, mODa 9 Advances in Model-Oriented Design and Analysis Contributions to Statistics 2010 Physica-Verlag HD 149 156
    • (2010) MODa 9 Advances in Model-Oriented Design and Analysis , pp. 149-156
    • Pepelyshev, A.1
  • 16
    • 81555201637 scopus 로고    scopus 로고
    • A computationally stable approach to Gaussian process interpolation of deterministic computer simulation data
    • P. Ranjan, R. Haynes, and R. Karsten A computationally stable approach to Gaussian process interpolation of deterministic computer simulation data Technometrics 53 4 2011 366 378
    • (2011) Technometrics , vol.53 , Issue.4 , pp. 366-378
    • Ranjan, P.1    Haynes, R.2    Karsten, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.