메뉴 건너뛰기




Volumn 5, Issue 1, 2012, Pages 223-251

Utility-guided clustering-based transaction data anonymization

Author keywords

Anonymization; Clustering based Algorithms; Data Privacy; Transaction Data

Indexed keywords

ANONYMIZATION; CLUSTERING-BASED ALGORITHMS; CLUSTERING-BASED FRAMEWORK; DATA UTILITIES; MEDICAL DATA SETS; PRIVACY BREACHES; PRIVACY REQUIREMENTS; SOLUTION SPACE; STATE-OF-THE-ART ALGORITHMS; TRANSACTION DATA;

EID: 84864105659     PISSN: 18885063     EISSN: 20131631     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (23)

References (51)
  • 3
    • 34250017239 scopus 로고    scopus 로고
    • A face is exposed for aol searcher no. 4417749
    • Aug
    • M. Barbaro and T. Zeller. A face is exposed for aol searcher no. 4417749. New York Times, Aug 2006.
    • (2006) New York Times
    • Barbaro, M.1    Zeller, T.2
  • 4
    • 28444449426 scopus 로고    scopus 로고
    • Data privacy through optimal k-anonymization
    • R.J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In 21st ICDE, pages 217-228, 2005.
    • (2005) 21st ICDE , pp. 217-228
    • Bayardo, R.J.1    Agrawal, R.2
  • 5
    • 38049126170 scopus 로고    scopus 로고
    • Efficient k-anonymity using clustering technique
    • J. Byun, A. Kamra, E. Bertino, and N. Li. Efficient k-anonymity using clustering technique. In DASFAA, pages 188-200, 2007.
    • (2007) DASFAA , pp. 188-200
    • Byun, J.1    Kamra, A.2    Bertino, E.3    Li, N.4
  • 6
    • 79956041471 scopus 로고    scopus 로고
    • rho-uncertainty: Inference-proof transaction anonymization
    • J. Cao, P. Karras, C. Raïssi, and K. Tan. rho-uncertainty: Inference-proof transaction anonymization. PVLDB, 3(1):1033-1044, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 1033-1044
    • Cao, J.1    Karras, P.2    Raïssi, C.3    Tan, K.4
  • 9
    • 26944448516 scopus 로고    scopus 로고
    • Ordinal, continuous and heterogeneous k-anonymity through microaggregation
    • J. Domingo-Ferrer and V. Torra. Ordinal, continuous and heterogeneous k-anonymity through microaggregation. DMKD, 11(2):195-212, 2005.
    • (2005) DMKD , vol.11 , Issue.2 , pp. 195-212
    • Domingo-Ferrer, J.1    Torra, V.2
  • 10
    • 77951201056 scopus 로고    scopus 로고
    • Privacy-preserving data publishing: A survey on recent developments
    • B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing: A survey on recent developments. ACM Comput. Surv., 42, 2010.
    • (2010) ACM Comput. Surv. , vol.42
    • Fung, B.C.M.1    Wang, K.2    Chen, R.3    Yu, P.S.4
  • 11
    • 28444499680 scopus 로고    scopus 로고
    • Top-down specialization for information and privacy preservation
    • B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for information and privacy preservation. In ICDE, pages 205-216, 2005.
    • (2005) ICDE , pp. 205-216
    • Fung, B.C.M.1    Wang, K.2    Yu, P.S.3
  • 12
    • 52649106883 scopus 로고    scopus 로고
    • On the anonymization of sparse high-dimensional data
    • G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of sparse high-dimensional data. In ICDE, pages 715-724, 2008.
    • (2008) ICDE , pp. 715-724
    • Ghinita, G.1    Tao, Y.2    Kalnis, P.3
  • 14
    • 63449094494 scopus 로고    scopus 로고
    • Exact knowledge hiding through database extension
    • A. Gkoulalas-Divanis and V. S. Verykios. Exact knowledge hiding through database extension. TKDE, 21(5):699-713, 2009.
    • (2009) TKDE , vol.21 , Issue.5 , pp. 699-713
    • Gkoulalas-Divanis, A.1    Verykios, V.S.2
  • 15
    • 52949107266 scopus 로고    scopus 로고
    • A free terrain model for trajectory k-anonymity
    • A. Gkoulalas-Divanis and V.S. Verykios. A free terrain model for trajectory k-anonymity. In DEXA, pages 49-56, 2008.
    • (2008) DEXA , pp. 49-56
    • Gkoulalas-Divanis, A.1    Verykios, V.S.2
  • 18
    • 84864086218 scopus 로고    scopus 로고
    • Identifying unsafe routes for network-based trajectory privacy
    • A. Gkoulalas-Divanis, V.S. Verykios, and Mohamed F. Mokbel. Identifying unsafe routes for network-based trajectory privacy. In SDM, pages 942-953, 2009.
    • (2009) SDM , pp. 942-953
    • Gkoulalas-Divanis, A.1    Verykios, V.S.2    Mohamed Mokbel, F.3
  • 19
    • 78049372159 scopus 로고    scopus 로고
    • Anonymization of set-valued data via top-down, local generalization
    • Y. He and J. F. Naughton. Anonymization of set-valued data via top-down, local generalization. PVLDB, 2(1):934-945, 2009.
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 934-945
    • He, Y.1    Naughton, J.F.2
  • 20
    • 0242625276 scopus 로고    scopus 로고
    • Transforming data to satisfy privacy constraints
    • V. S. Iyengar. Transforming data to satisfy privacy constraints. In KDD, pages 279-288, 2002.
    • (2002) KDD , pp. 279-288
    • Iyengar, V.S.1
  • 21
    • 33646017451 scopus 로고    scopus 로고
    • Privacy preserving clustering
    • S. Jha, L. Kruger, and P. McDaniel. Privacy preserving clustering. In ESORICS, pages 397-417, 2005.
    • (2005) ESORICS , pp. 397-417
    • Jha, S.1    Kruger, L.2    McDaniel, P.3
  • 23
    • 76749111694 scopus 로고    scopus 로고
    • Efficient multidimensional suppression for k-anonymity
    • S. Kisilevich, L. Rokach, Y. Elovici, and B. Shapira. Efficient multidimensional suppression for k-anonymity. TKDE, 22:334-347, 2010.
    • (2010) TKDE , vol.22 , pp. 334-347
    • Kisilevich, S.1    Rokach, L.2    Elovici, Y.3    Shapira, B.4
  • 25
    • 50649097562 scopus 로고    scopus 로고
    • Achieving-anonymity by clustering in attribute hierarchical structures
    • J. Li, R. Wong, A. Fu, and J. Pei. Achieving-anonymity by clustering in attribute hierarchical structures. In DaWaK, pages 405-416, 2006.
    • (2006) DaWaK , pp. 405-416
    • Li, J.1    Wong, R.2    Fu, A.3    Pei, J.4
  • 26
    • 57149126815 scopus 로고    scopus 로고
    • Towards identity anonymization on graphs
    • K. Liu and E. Terzi. Towards identity anonymization on graphs. In 2008 SIGMOD, pages 93-106, 2008.
    • (2008) 2008 SIGMOD , pp. 93-106
    • Liu, K.1    Terzi, E.2
  • 29
    • 79961206921 scopus 로고    scopus 로고
    • COAT: Constraint-based anonymization of transactions
    • To Appear, DOI: 10.1007/s10115-010-0354-4
    • G. Loukides, A. Gkoulalas-Divanis, and B. Malin. COAT: Constraint-based anonymization of transactions. Knowledge and Information Systems, 2011. To Appear, DOI: 10.1007/s10115-010-0354-4.
    • (2011) Knowledge and Information Systems
    • Loukides, G.1    Gkoulalas-Divanis, A.2    Malin, B.3
  • 30
    • 78049360732 scopus 로고    scopus 로고
    • Anonymizing transaction data to eliminate sensitive inferences
    • G. Loukides, A. Gkoulalas-Divanis, and J. Shao. Anonymizing transaction data to eliminate sensitive inferences. In DEXA, pages 400-415, 2010.
    • (2010) DEXA , pp. 400-415
    • Loukides, G.1    Gkoulalas-Divanis, A.2    Shao, J.3
  • 33
    • 50249142450 scopus 로고    scopus 로고
    • Robust de-anonymization of large sparse datasets
    • A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. In IEEE S&P, pages 111-125, 2008.
    • (2008) In IEEE S&P , pp. 111-125
    • Narayanan, A.1    Shmatikov, V.2
  • 34
    • 34548689125 scopus 로고    scopus 로고
    • Thoughts on k-anonymization
    • M. Ercan Nergiz and Chris Clifton. Thoughts on k-anonymization. DKE, 63(3):622-645, 2007.
    • (2007) DKE , vol.63 , Issue.3 , pp. 622-645
    • Ercan Nergiz, M.1    Clifton, C.2
  • 35
    • 67651171492 scopus 로고    scopus 로고
    • Multirelational k-anonymity
    • M.E. Nergiz, C. Clifton, and A.E. Nergiz. Multirelational k-anonymity. TKDE, 21(8):1104-1117, 2009.
    • (2009) TKDE , vol.21 , Issue.8 , pp. 1104-1117
    • Nergiz, M.E.1    Clifton, C.2    Nergiz, A.E.3
  • 36
    • 33746056957 scopus 로고    scopus 로고
    • Protecting sensitive knowledge by data sanitization
    • S. R. M. Oliveira and O. R. Zaidie;ane. Protecting sensitive knowledge by data sanitization. In ICDM, pages 613-616, 2003.
    • (2003) ICDM , pp. 613-616
    • Oliveira, S.R.M.1    Zaidie2    ane, O.R.3
  • 37
    • 33645714452 scopus 로고    scopus 로고
    • Association rule discovery with the train and test approach for heart disease prediction
    • C. Ordonez. Association rule discovery with the train and test approach for heart disease prediction. IEEE Transactions on Information Technology in Biomedicine, 10(2):334-343, 2006.
    • (2006) IEEE Transactions on Information Technology in Biomedicine , vol.10 , Issue.2 , pp. 334-343
    • Ordonez, C.1
  • 39
    • 1142294784 scopus 로고    scopus 로고
    • Maintaining data privacy in association rule mining
    • S. J. Rizvi and J. R. Haritsa. Maintaining data privacy in association rule mining. In VLDB, pages 682-693, 2002.
    • (2002) VLDB , pp. 682-693
    • Rizvi, S.J.1    Haritsa, J.R.2
  • 41
    • 0035517699 scopus 로고    scopus 로고
    • Protecting respondents identities in microdata release
    • P. Samarati. Protecting respondents identities in microdata release. TKDE, 13(9):1010-1027, 2001.
    • (2001) TKDE , vol.13 , Issue.9 , pp. 1010-1027
    • Samarati, P.1
  • 42
    • 0344990562 scopus 로고    scopus 로고
    • Using unknowns to prevent discovery of association rules
    • Y. Saygin, V.S. Verykios, and C. Clifton. Using unknowns to prevent discovery of association rules. SIGMOD Record, 30(4):45-54, 2001.
    • (2001) SIGMOD Record , vol.30 , Issue.4 , pp. 45-54
    • Saygin, Y.1    Verykios, V.S.2    Clifton, C.3
  • 45
    • 0036811662 scopus 로고    scopus 로고
    • k-anonymity: A model for protecting privacy
    • L. Sweeney. k-anonymity: a model for protecting privacy. IJUFKS, 10:557-570, 2002.
    • (2002) IJUFKS , vol.10 , pp. 557-570
    • Sweeney, L.1
  • 47
    • 84859177489 scopus 로고    scopus 로고
    • Privacy-preserving anonymization of set-valued data
    • M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving anonymization of set-valued data. PVLDB, 1(1):115-125, 2008.
    • (2008) PVLDB , vol.1 , Issue.1 , pp. 115-125
    • Terrovitis, M.1    Mamoulis, N.2    Kalnis, P.3
  • 48
    • 33749582207 scopus 로고    scopus 로고
    • Utility-based anonymization using local recoding
    • J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W-C. Fu. Utility-based anonymization using local recoding. In KDD, pages 785-790, 2006.
    • (2006) In KDD , pp. 785-790
    • Xu, W.1    Wang, J.2    Pei, J.3    Wang, X.4    Shi, B.5    Fu, W.-C.A.6
  • 50
    • 65449148368 scopus 로고    scopus 로고
    • Anonymizing transaction databases for publication
    • Y. Xu, K. Wang, A. W-C. Fu, and P. S. Yu. Anonymizing transaction databases for publication. In KDD, pages 767-775, 2008.
    • (2008) In KDD , pp. 767-775
    • Xu, Y.1    Wang, K.2    Fu, W.-C.A.3    Yu, P.S.4
  • 51
    • 0035788918 scopus 로고    scopus 로고
    • Real world performance of association rule algorithms
    • Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms. In KDD, pages 401-406, 2001.
    • (2001) KDD , pp. 401-406
    • Zheng, Z.1    Kohavi, R.2    Mason, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.