메뉴 건너뛰기




Volumn 3, Issue 1, 2010, Pages 1033-1044

ρ-uncertainty: Inferenceproof transaction anonymization

Author keywords

[No Author keywords available]

Indexed keywords

DATA INTEGRITY; GENERALIZATION AND SUPPRESSIONS; INFORMATION LOSS; MEDICAL RECORD; PARTIAL INFORMATION; PRIVACY THREATS; TRANSACTION DATA; TRIVIAL SOLUTIONS;

EID: 79956041471     PISSN: None     EISSN: 21508097     Source Type: Conference Proceeding    
DOI: 10.14778/1920841.1920971     Document Type: Article
Times cited : (75)

References (33)
  • 1
    • 35348877424 scopus 로고    scopus 로고
    • Why we search: visualizing and predicting user behavior
    • E. Adar, D. S. Weld, B. N. Bershad, and S. S. Gribble. Why we search: visualizing and predicting user behavior. In WWW, 2007.
    • (2007) WWW
    • Adar, E.1    Weld, D.S.2    Bershad, B.N.3    Gribble, S.S.4
  • 2
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, 1993.
    • (1993) SIGMOD
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 3
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, 1994.
    • (1994) VLDB
    • Agrawal, R.1    Srikant, R.2
  • 4
    • 57849129801 scopus 로고    scopus 로고
    • FRAPP: A framework for high-accuracy privacy-preserving mining
    • S. Agrawal, J. R. Haritsa, and B. A. Prakash. FRAPP: A framework for high-accuracy privacy-preserving mining. Data Min. Knowl. Discov., 18(1):101-139, 2009.
    • (2009) Data Min. Knowl. Discov. , vol.18 , Issue.1 , pp. 101-139
    • Agrawal, S.1    Haritsa, J.R.2    Prakash, B.A.3
  • 5
    • 0031219754 scopus 로고    scopus 로고
    • A new and versatile method for association generation
    • A. Amir, R. Feldman, and R. Kashi. A new and versatile method for association generation. Information Systems, 22(6-7):333-347, 1997.
    • (1997) Information Systems , vol.22 , Issue.6-7 , pp. 333-347
    • Amir, A.1    Feldman, R.2    Kashi, R.3
  • 6
    • 0032091573 scopus 로고    scopus 로고
    • Efficiently mining long patterns from databases
    • R. J. Bayardo, Jr. Efficiently mining long patterns from databases. In SIGMOD, 1998.
    • (1998) SIGMOD
    • Bayardo Jr., R.J.1
  • 7
    • 67650033440 scopus 로고    scopus 로고
    • Probabilistic query expansion using query logs
    • H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Probabilistic query expansion using query logs. In WWW, 2002.
    • (2002) WWW
    • Cui, H.1    Wen, J.-R.2    Nie, J.-Y.3    Ma, W.-Y.4
  • 9
    • 1142263341 scopus 로고    scopus 로고
    • Limiting privacy breaches in privacy preserving data mining
    • A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In PODS, 2003.
    • (2003) PODS
    • Evfimievski, A.1    Gehrke, J.2    Srikant, R.3
  • 11
    • 68649129111 scopus 로고    scopus 로고
    • A framework for efficient data anonymization under privacy and accuracy constraints
    • G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. A framework for efficient data anonymization under privacy and accuracy constraints. ACM TODS, 34(2):1-47, 2009.
    • (2009) ACM TODS , vol.34 , Issue.2 , pp. 1-47
    • Ghinita, G.1    Karras, P.2    Kalnis, P.3    Mamoulis, N.4
  • 12
    • 52649106883 scopus 로고    scopus 로고
    • On the anonymization of sparse high-dimensional data
    • G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of sparse high-dimensional data. In ICDE, 2008.
    • (2008) ICDE
    • Ghinita, G.1    Tao, Y.2    Kalnis, P.3
  • 13
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD, 2000.
    • (2000) SIGMOD
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 14
    • 78049372159 scopus 로고    scopus 로고
    • Anonymization of set-valued data via top-down, local generalization
    • Y. He and J. F. Naughton. Anonymization of set-valued data via top-down, local generalization. PVLDB, 2(1):934-945, 2009.
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 934-945
    • He, Y.1    Naughton, J.F.2
  • 15
    • 0242625276 scopus 로고    scopus 로고
    • Transforming data to satisfy privacy constraints
    • V. S. Iyengar. Transforming data to satisfy privacy constraints. In KDD, 2002.
    • (2002) KDD
    • Iyengar, V.S.1
  • 16
    • 70849111568 scopus 로고    scopus 로고
    • Attacks on privacy and deFinetti's theorem
    • D. Kifer. Attacks on privacy and deFinetti's theorem. In SIGMOD, 2009.
    • (2009) SIGMOD
    • Kifer, D.1
  • 18
    • 1142294784 scopus 로고    scopus 로고
    • Maintaining data privacy in association rule mining
    • S. J. Rizvi and J. R. Haritsa. Maintaining data privacy in association rule mining. In VLDB, 2002.
    • (2002) VLDB
    • Rizvi, S.J.1    Haritsa, J.R.2
  • 19
    • 0035517699 scopus 로고    scopus 로고
    • Protecting respondents' identities in microdata release
    • P. Samarati. Protecting respondents' identities in microdata release. IEEE TKDE, 13(6):1010-1027, 2001.
    • (2001) IEEE TKDE , vol.13 , Issue.6 , pp. 1010-1027
    • Samarati, P.1
  • 20
    • 0002082858 scopus 로고
    • An efficient algorithm for mining association rules in large databases
    • A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient algorithm for mining association rules in large databases. In VLDB, 1995.
    • (1995) VLDB
    • Savasere, A.1    Omiecinski, E.2    Navathe, S.B.3
  • 21
    • 0344990562 scopus 로고    scopus 로고
    • Using unknowns to prevent discovery of association rules
    • Y. Saygin, V. S. Verykios, and C. Clifton. Using unknowns to prevent discovery of association rules. SIGMOD Rec., 30(4):45-54, 2001.
    • (2001) SIGMOD Rec. , vol.30 , Issue.4 , pp. 45-54
    • Saygin, Y.1    Verykios, V.S.2    Clifton, C.3
  • 22
    • 0002880407 scopus 로고
    • Mining generalized association rules
    • R. Srikant and R. Agrawal. Mining generalized association rules. In VLDB, 1995.
    • (1995) VLDB
    • Srikant, R.1    Agrawal, R.2
  • 23
    • 84859177489 scopus 로고    scopus 로고
    • Privacy-preserving anonymization of set-valued data
    • M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving anonymization of set-valued data. PVLDB, 1(1):115-125, 2008.
    • (2008) PVLDB , vol.1 , Issue.1 , pp. 115-125
    • Terrovitis, M.1    Mamoulis, N.2    Kalnis, P.3
  • 25
    • 67649663894 scopus 로고    scopus 로고
    • FF-anonymity: When quasi-identifiers are missing
    • K. Wang, Y. Xu, A. W. C. Fu, and R. C. W. Wong. FF-anonymity: When quasi-identifiers are missing. In ICDE, 2009.
    • (2009) ICDE
    • Wang, K.1    Xu, Y.2    Fu, A.W.C.3    Wong, R.C.W.4
  • 26
    • 85011016303 scopus 로고    scopus 로고
    • Minimality attack in privacy preserving data publishing
    • R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack in privacy preserving data publishing. In VLDB, 2007.
    • (2007) VLDB
    • Wong, R.C.-W.1    Fu, A.W.-C.2    Wang, K.3    Pei, J.4
  • 27
    • 33845625238 scopus 로고    scopus 로고
    • Hiding sensitive association rules with limited side effects
    • Y.-H. Wu, C.-M. Chiang, and A. L. Chen. Hiding sensitive association rules with limited side effects. IEEE TKDE, 19(1):29-42, 2007.
    • (2007) IEEE TKDE , vol.19 , Issue.1 , pp. 29-42
    • Wu, Y.-H.1    Chiang, C.-M.2    Chen, A.L.3
  • 28
    • 84893853914 scopus 로고    scopus 로고
    • Anatomy: simple and effective privacy preservation
    • X. Xiao and Y. Tao. Anatomy: simple and effective privacy preservation. In VLDB, 2006.
    • (2006) VLDB
    • Xiao, X.1    Tao, Y.2
  • 29
    • 34250680246 scopus 로고    scopus 로고
    • Personalized privacy preservation
    • X. Xiao and Y. Tao. Personalized privacy preservation. In SIGMOD, 2006.
    • (2006) SIGMOD
    • Xiao, X.1    Tao, Y.2
  • 30
    • 65449148368 scopus 로고    scopus 로고
    • Anonymizing transaction databases for publication
    • Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu. Anonymizing transaction databases for publication. In KDD, 2008.
    • (2008) KDD
    • Xu, Y.1    Wang, K.A.2    Fu, W.-C.3    Yu, P.S.4
  • 31
    • 12244312166 scopus 로고    scopus 로고
    • The complexity of mining maximal frequent itemsets and maximal frequent patterns
    • G. Yang. The complexity of mining maximal frequent itemsets and maximal frequent patterns. In KDD, 2004.
    • (2004) KDD
    • Yang, G.1
  • 32
    • 0033718951 scopus 로고    scopus 로고
    • Scalable algorithms for association mining
    • M. J. Zaki. Scalable algorithms for association mining. IEEE TKDE, 12(3):372-390, 2000.
    • (2000) IEEE TKDE , vol.12 , Issue.3 , pp. 372-390
    • Zaki, M.J.1
  • 33
    • 0035788918 scopus 로고    scopus 로고
    • Real world performance of association rule algorithms
    • Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms. In KDD, 2001.
    • (2001) KDD
    • Zheng, Z.1    Kohavi, R.2    Mason, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.