-
1
-
-
0038166193
-
Database-friendly random projections: Johnson-Lindenstrauss with binary coins
-
D. Achlioptas. Database-friendly random projections: Johnson- Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4):671-687, 2003.
-
(2003)
Journal of Computer and System Sciences
, vol.66
, Issue.4
, pp. 671-687
-
-
Achlioptas, D.1
-
2
-
-
0242550397
-
Sampling techniques for kernel methods
-
D. Achlioptas, F. McSherry, and B. Schölkopf. Sampling techniques for kernel methods. In NIPS, pages 335-342, 2001.
-
(2001)
NIPS
, pp. 335-342
-
-
Achlioptas, D.1
McSherry, F.2
Schölkopf, B.3
-
3
-
-
33745467619
-
An algorithmic theory of learning: Robust concepts and random projection
-
R. Arriaga and S. Vempala. An algorithmic theory of learning: Robust concepts and random projection. Machine Learning, 63(2):161-182, 2006.
-
(2006)
Machine Learning
, vol.63
, Issue.2
, pp. 161-182
-
-
Arriaga, R.1
Vempala, S.2
-
4
-
-
0035789317
-
Random projection in dimensionality reduction: Applications to image and text data
-
E. Bingham and H. Mannila. Random projection in dimensionality reduction: Applications to image and text data. In KDD, pages 245-250, 2001.
-
(2001)
KDD
, pp. 245-250
-
-
Bingham, E.1
Mannila, H.2
-
6
-
-
0031346696
-
On the resemblance and containment of documents
-
A. Broder. On the resemblance and containment of documents. In the Compression and Complexity of Sequences, pages 21-29, 1997.
-
(1997)
Compression and Complexity of Sequences
, pp. 21-29
-
-
Broder, A.1
-
7
-
-
0034824884
-
Concept decompositions for large sparse text data using clustering
-
I. Dhillon and D.Modha. Concept decompositions for large sparse text data using clustering. Machine Learning, 42(1-2):143-175, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.1-2
, pp. 143-175
-
-
Dhillon, I.1
Modha, D.2
-
8
-
-
29244453931
-
On the nystrom method for approximating a gram matrix for improved kernel-based learning
-
Dec
-
P. Drineas and M. Mahoney. On the nystrom method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6(Dec):2153-2175, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 2153-2175
-
-
Drineas, P.1
Mahoney, M.2
-
9
-
-
0034504507
-
Stable distributions, pseudorandom generators, embeddings and data stream computation
-
P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream computation. In FOCS, pages 189-197, 2000.
-
(2000)
FOCS
, pp. 189-197
-
-
Indyk, P.1
-
11
-
-
35748938363
-
Using sketches to estimate associations
-
P. Li and K. Church. Using sketches to estimate associations. In HLT/EMNLP, pages 708-715, 2005.
-
(2005)
HLT/EMNLP
, pp. 708-715
-
-
Li, P.1
Church, K.2
-
12
-
-
85083905886
-
A sketch algorithm for estimating two-way and multi-way associations
-
To Appear
-
P. Li and K. Church. A sketch algorithm for estimating two-way and multi-way associations. Computational Linguistics, To Appear.
-
Computational Linguistics
-
-
Li, P.1
Church, K.2
-
13
-
-
34748926449
-
Conditional random sampling: A sketched-based sampling technique for sparse data
-
Stanford University
-
P. Li, K. Church, and T. Hastie. Conditional random sampling: A sketched-based sampling technique for sparse data. Technical Report 2006-08, Department of Statistics, Stanford University), 2006.
-
(2006)
Technical Report 2006-08, Department of Statistics
-
-
Li, P.1
Church, K.2
Hastie, T.3
-
15
-
-
33746094275
-
Improving random projections using marginal information
-
P. Li, T. Hastie, and K. Church. Improving random projections using marginal information. In COLT, pages 635-649, 2006.
-
(2006)
COLT
, pp. 635-649
-
-
Li, P.1
Hastie, T.2
Church, K.3
-
16
-
-
33749573641
-
Very sparse random projections
-
P. Li, T. Hastie, and K. Church. Very sparse random projections. In KDD, pages 287-296, 2006.
-
(2006)
KDD
, pp. 287-296
-
-
Li, P.1
Hastie, T.2
Church, K.3
-
17
-
-
14844315829
-
-
American Mathematical Society, Providence, RI
-
S. Vempala. The Random Projection Method. American Mathematical Society, Providence, RI, 2004.
-
(2004)
The Random Projection Method
-
-
Vempala, S.1
|