메뉴 건너뛰기




Volumn 36, Issue 11, 2012, Pages 5534-5554

Online affine model identification of nonlinear processes using a new adaptive neuro-fuzzy approach

Author keywords

Adaptive neuro fuzzy model; Affine model; ANFIS; EKF; Online identification

Indexed keywords

AFFINE MODEL; ANFIS; EKF; NEURO-FUZZY MODEL; ON-LINE IDENTIFICATION;

EID: 84864058771     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2012.01.010     Document Type: Article
Times cited : (15)

References (31)
  • 2
    • 0028370964 scopus 로고
    • Rule-base structure identification in an adaptive network-based fuzzy inference system
    • Sun C.T. Rule-base structure identification in an adaptive network-based fuzzy inference system. IEEE Trans. Fuzzy Systems 1994, 2(1):64-73.
    • (1994) IEEE Trans. Fuzzy Systems , vol.2 , Issue.1 , pp. 64-73
    • Sun, C.T.1
  • 3
    • 84864028138 scopus 로고    scopus 로고
    • Comparison of neuro-fuzzy structures for system identification in UKACC International Conference on CONTROL, UK
    • R.P. Pavia, A. Dourado, Comparison of neuro-fuzzy structures for system identification in UKACC International Conference on CONTROL, UK, 2000.
    • (2000)
    • Pavia, R.P.1    Dourado, A.2
  • 4
    • 11244351634 scopus 로고    scopus 로고
    • An approach for online extraction of fuzzy rules using a self-organizing fuzzy neural networks
    • Leng G., McGinnity T.M., Prased G. An approach for online extraction of fuzzy rules using a self-organizing fuzzy neural networks. Fuzzy Sets Syst. 2005, 150(2):211-243.
    • (2005) Fuzzy Sets Syst. , vol.150 , Issue.2 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prased, G.3
  • 6
    • 0035400665 scopus 로고    scopus 로고
    • The local paradigm for modeling and control: from neuro-fuzzy to lazy learning
    • Bontempi G., Bersini H., Birattari M. The local paradigm for modeling and control: from neuro-fuzzy to lazy learning. Fuzzy Sets Syst. 2001, 121/1:59-72.
    • (2001) Fuzzy Sets Syst. , pp. 59-72
    • Bontempi, G.1    Bersini, H.2    Birattari, M.3
  • 7
    • 34548501286 scopus 로고    scopus 로고
    • Modeling plant control strategies and their applications into a knowledge-based system
    • Marumo R., Sebusang S.E.M. Modeling plant control strategies and their applications into a knowledge-based system. Appl. Soft Comput. 2008, 8:261-273.
    • (2008) Appl. Soft Comput. , vol.8 , pp. 261-273
    • Marumo, R.1    Sebusang, S.E.M.2
  • 8
    • 0036802284 scopus 로고    scopus 로고
    • Identification of evolving fuzzy rule-based models
    • Angelov P., Buswell R. Identification of evolving fuzzy rule-based models. IEEE Trans. Fuzzy Syst. 2002, 10(5):667-677.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.5 , pp. 667-677
    • Angelov, P.1    Buswell, R.2
  • 9
    • 39449098134 scopus 로고    scopus 로고
    • Direct adaptive fuzzy control with a self-structuring algorithm
    • Phan P.A., Gale T.J. Direct adaptive fuzzy control with a self-structuring algorithm. Fuzzy Sets Syst. 2008, 159:871-899.
    • (2008) Fuzzy Sets Syst. , vol.159 , pp. 871-899
    • Phan, P.A.1    Gale, T.J.2
  • 10
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference systems
    • Jang J.-S.R. ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybernet. 1993, 23(3):665-685.
    • (1993) IEEE Trans. Syst. Man Cybernet. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 11
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference systems
    • Jang J.-S.R., Sun C.-T. Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Network. 1993, 4(1):156-159.
    • (1993) IEEE Trans. Neural Network. , vol.4 , Issue.1 , pp. 156-159
    • Jang, J.-S.R.1    Sun, C.-T.2
  • 12
    • 0141501530 scopus 로고    scopus 로고
    • Neuro-fuzzy methods for nonlinear system identification
    • Babuska R., Verbruggen H. Neuro-fuzzy methods for nonlinear system identification. Ann. Rev. Contr. 2003, 27:73-85.
    • (2003) Ann. Rev. Contr. , vol.27 , pp. 73-85
    • Babuska, R.1    Verbruggen, H.2
  • 13
    • 33645084590 scopus 로고    scopus 로고
    • An online self-constructing neural fuzzy inference network and its applications
    • Juang C.-F., Lin C.-T. An online self-constructing neural fuzzy inference network and its applications. IEEE Trans. Fuzzy Syst. 2002, 10(2):144-154.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 144-154
    • Juang, C.-F.1    Lin, C.-T.2
  • 14
    • 0042880039 scopus 로고    scopus 로고
    • Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems
    • Gao Y., Er M.J. Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 2003, 11:462-477.
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , pp. 462-477
    • Gao, Y.1    Er, M.J.2
  • 15
    • 0033692531 scopus 로고    scopus 로고
    • Dynamic fuzzy neural networks - a novel approach to function approximation
    • Wu S., Er M.J. Dynamic fuzzy neural networks - a novel approach to function approximation. IEEE Trans. Syst. Man Cybernet. B: Cybernet. 2000, 30(2):358-364.
    • (2000) IEEE Trans. Syst. Man Cybernet. B: Cybernet. , vol.30 , Issue.2 , pp. 358-364
    • Wu, S.1    Er, M.J.2
  • 16
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks
    • Yingwei L., Sundararajan N., Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks. Neural Comput. 1997, 9:461-478.
    • (1997) Neural Comput. , vol.9 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 17
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • Rong H.-J., Sundararajan N., Huang G.-B., Saratchandran P. Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst. 2006, 157:1260-1275.
    • (2006) Fuzzy Sets Syst. , vol.157 , pp. 1260-1275
    • Rong, H.-J.1    Sundararajan, N.2    Huang, G.-B.3    Saratchandran, P.4
  • 18
    • 0029308580 scopus 로고
    • Adaptive control of a class of nonlinear discrete-time systems using neural networks
    • Chen F.-C., Khalil H.K. Adaptive control of a class of nonlinear discrete-time systems using neural networks. IEEE Trans. Automat. Contr. 1995, 40(5):791-801.
    • (1995) IEEE Trans. Automat. Contr. , vol.40 , Issue.5 , pp. 791-801
    • Chen, F.-C.1    Khalil, H.K.2
  • 19
    • 0035216372 scopus 로고    scopus 로고
    • Approximate linearization via feedback: an overview
    • Guardabassi G.O., Savaesi S.M. Approximate linearization via feedback: an overview. Automation 2001, 37(1):1-15.
    • (2001) Automation , vol.37 , Issue.1 , pp. 1-15
    • Guardabassi, G.O.1    Savaesi, S.M.2
  • 21
    • 0031140389 scopus 로고    scopus 로고
    • Adaptive control using neural networks and approximate model
    • Narendra K.S., Mukhopadyay S. Adaptive control using neural networks and approximate model. IEEE Trans. Neural Network 1997, 8(3):475-485.
    • (1997) IEEE Trans. Neural Network , vol.8 , Issue.3 , pp. 475-485
    • Narendra, K.S.1    Mukhopadyay, S.2
  • 22
    • 0001461476 scopus 로고
    • Stable adaptive control of robot manipulators using neural networks
    • Sanner R., Slotine J.-J. Stable adaptive control of robot manipulators using neural networks. Neural Comput. 1995, 7(N4):753-790.
    • (1995) Neural Comput. , vol.7 , Issue.N4 , pp. 753-790
    • Sanner, R.1    Slotine, J.-J.2
  • 25
    • 84974743850 scopus 로고
    • Fuzzy model identification based on a cluster estimation
    • Chiu S.L. Fuzzy model identification based on a cluster estimation. J. Intell. Fuzzy Syst. 1995, 2:267-278.
    • (1995) J. Intell. Fuzzy Syst. , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 28
    • 0034112503 scopus 로고    scopus 로고
    • Control of nonisothermal CSTR with time varying parameters via dynamic neural network control (DNNC)v
    • Nikravesh M., Farell A.E., Stanford T.G. Control of nonisothermal CSTR with time varying parameters via dynamic neural network control (DNNC)v. Chem. Eng. J. 2000, 76:1-16.
    • (2000) Chem. Eng. J. , vol.76 , pp. 1-16
    • Nikravesh, M.1    Farell, A.E.2    Stanford, T.G.3
  • 30
    • 35148820175 scopus 로고    scopus 로고
    • Nonlinear system identification and control of chemical processes using fast orthogonal search
    • Mikael Eklund J., korenberg Michael.J., James Mclellan P. Nonlinear system identification and control of chemical processes using fast orthogonal search. J. Process Contr. 2007, 17:742-754.
    • (2007) J. Process Contr. , vol.17 , pp. 742-754
    • Mikael Eklund, J.1    korenberg, M.2    James Mclellan, P.3
  • 31
    • 0027048182 scopus 로고
    • A comparison of three nonlinear controller designs applied to a nonadiabatic first-order exothermic reaction in a CSTR
    • Chicago
    • M. Piovoso, K. Kasanovich, V. Rikhlenko, A. Guez, A comparison of three nonlinear controller designs applied to a nonadiabatic first-order exothermic reaction in a CSTR, in: Proceedings of American control conferences, Chicago, 1992, pp. 490-494.
    • (1992) Proceedings of American control conferences , pp. 490-494
    • Piovoso, M.1    Kasanovich, K.2    Rikhlenko, V.3    Guez, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.