메뉴 건너뛰기




Volumn 121, Issue 1, 2001, Pages 59-72

The local paradigm for modeling and control: From neuro-fuzzy to lazy learning

Author keywords

Control design; Identification; Local modeling

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; APPROXIMATION THEORY; CONTROL SYSTEM ANALYSIS; IDENTIFICATION (CONTROL SYSTEMS); INFERENCE ENGINES; LEARNING SYSTEMS; MATHEMATICAL MODELS; NONLINEAR CONTROL SYSTEMS;

EID: 0035400665     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0165-0114(99)00172-4     Document Type: Article
Times cited : (83)

References (50)
  • 1
    • 85152621496 scopus 로고
    • Incremental, instance-based learning of independent and graded concept descriptions
    • San Mateo, CA, Morgan Kaufmann
    • D.W. Aha, Incremental, instance-based learning of independent and graded concept descriptions, in: Sixth International Machine Learning Workshop, San Mateo, CA, Morgan Kaufmann, 1989, pp. 387-391.
    • (1989) In: Sixth International Machine Learning Workshop , pp. 387-391
    • Aha, D.W.1
  • 2
  • 3
    • 0000642183 scopus 로고
    • Computer control of a paper machine: An application of linear stochastic control theory
    • Åström K.J. Computer control of a paper machine: an application of linear stochastic control theory. IBM J. Res. Dev. 11:1967;389-404.
    • (1967) IBM J. Res. Dev. , vol.11 , pp. 389-404
    • Åström, K.J.1
  • 4
    • 0020815940 scopus 로고
    • Theory and applications of adaptive control - A survey
    • Åström K.J. Theory and applications of adaptive control - a survey. Automatica. 19(5):1983;471-486.
    • (1983) Automatica , vol.19 , Issue.5 , pp. 471-486
    • Åström, K.J.1
  • 6
    • 0005760958 scopus 로고
    • Memory-based approaches to approximating continuous functions
    • M. Casdagli, & S. Eubank. Addison-Wesley: Reading, MA
    • Atkeson C.G. Memory-based approaches to approximating continuous functions. Casdagli M., Eubank S. Nonlinear Modeling and Forecasting. 1992;503-521 Reading, MA, Addison-Wesley.
    • (1992) Nonlinear Modeling and Forecasting , pp. 503-521
    • Atkeson, C.G.1
  • 10
    • 0002538248 scopus 로고    scopus 로고
    • Fuzzy set methods for local modelling and identification
    • R. Murray-Smith, & T.A. Johansen. London: Taylor and Francis
    • Babuska R., Verbruggen H.B. Fuzzy set methods for local modelling and identification. Murray-Smith R., Johansen T.A. Multiple Model Approaches to Modeling and Control. 1997;75-100 Taylor and Francis, London.
    • (1997) Multiple Model Approaches to Modeling and Control , pp. 75-100
    • Babuska, R.1    Verbruggen, H.B.2
  • 11
    • 0010869334 scopus 로고
    • On the non parametric estimation of regression functions
    • Benedetti J.K. On the non parametric estimation of regression functions. J. Roy. Statist. Soc. Ser. B. 39:1977;248-253.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 248-253
    • Benedetti, J.K.1
  • 13
    • 0000091229 scopus 로고    scopus 로고
    • Now comes the time to defuzzify the neuro-fuzzy models
    • Bersini H., Bontempi G. Now comes the time to defuzzify the neuro-fuzzy models. Fuzzy Sets and Systems. 90(2):1997;161-170.
    • (1997) Fuzzy Sets and Systems , vol.90 , Issue.2 , pp. 161-170
    • Bersini, H.1    Bontempi, G.2
  • 15
    • 84898968508 scopus 로고    scopus 로고
    • Lazy learning meets the recursive least-squares algorithm
    • in: M.S. Kearns, S.A. Solla, D.A. Cohn (Eds.), MIT Press, Cambridge, MA
    • M. Birattari, G. Bontempi, H. Bersini, Lazy learning meets the recursive least-squares algorithm, in: M.S. Kearns, S.A. Solla, D.A. Cohn (Eds.), Advances in Neural Information Processing Systems 11, MIT Press, Cambridge, MA, 1999, pp. 375-381.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 375-381
    • Birattari, M.1    Bontempi, G.2    Bersini, H.3
  • 25
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland W.S. Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74:1979;829-836.
    • (1979) J. Amer. Statist. Assoc. , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 28
    • 0000665083 scopus 로고
    • Non parametric estimation of a multivariate probability density
    • Epanechnikov V.A. Non parametric estimation of a multivariate probability density. Theory Probab. Appl. 14:1969;153-158.
    • (1969) Theory Probab. Appl. , vol.14 , pp. 153-158
    • Epanechnikov, V.A.1
  • 29
    • 34249982739 scopus 로고
    • Predicting chaotic time series
    • Farmer J.D., Sidorowich J.J. Predicting chaotic time series. Phys. Rev. Lett. 8(59):1987;845-848.
    • (1987) Phys. Rev. Lett. , vol.8 , Issue.59 , pp. 845-848
    • Farmer, J.D.1    Sidorowich, J.J.2
  • 32
    • 50649125497 scopus 로고
    • Constructing narmax models using armax models
    • Johansen T.A., Foss B.A. Constructing narmax models using armax models. Internat. J. Control. 58:1993;1125-1153.
    • (1993) Internat. J. Control , vol.58 , pp. 1125-1153
    • Johansen, T.A.1    Foss, B.A.2
  • 33
    • 0002449810 scopus 로고
    • Semi-empirical modeling of nonlinear dynamic systems through identification of operating regimes and local models
    • K.J. Hunt, G.R. Irwin, & K. Warwick. Berlin: Springer
    • Johansen T.A., Foss B.A. Semi-empirical modeling of nonlinear dynamic systems through identification of operating regimes and local models. Hunt K.J., Irwin G.R., Warwick K. Neural Network Engineering in Dynamic Control Systems. 1995;105-126 Springer, Berlin.
    • (1995) Neural Network Engineering in Dynamic Control Systems , pp. 105-126
    • Johansen, T.A.1    Foss, B.A.2
  • 34
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the em algorithm
    • Jordan M.J., Jacobs R.A. Hierarchical mixtures of experts and the em algorithm. Neural Comput. 6:1994;181-214.
    • (1994) Neural Comput. , vol.6 , pp. 181-214
    • Jordan, M.J.1    Jacobs, R.A.2
  • 35
    • 0022011031 scopus 로고
    • Input-output parametric models for non-linear systems
    • Leontaritis I.J., Billings S.A. Input-output parametric models for non-linear systems. Internat. J. Control. 41(2):1985;303-344.
    • (1985) Internat. J. Control , vol.41 , Issue.2 , pp. 303-344
    • Leontaritis, I.J.1    Billings, S.A.2
  • 36
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J., Darken C.J. Fast learning in networks of locally-tuned processing units. Neural Comput. 1(2):1989;281-294.
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 37
    • 0009584922 scopus 로고
    • Local model architectures for nonlinear modelling and control
    • K.J. Hunt, G.R. Irwin, & K. Warwick. Berlin: Springer
    • Murray-Smith R., Hunt K. Local model architectures for nonlinear modelling and control. Hunt K.J., Irwin G.R., Warwick K. Neural Network Engineering in Dynamic Control Systems. 1995;61-82 Springer, Berlin.
    • (1995) Neural Network Engineering in Dynamic Control Systems , pp. 61-82
    • Murray-Smith, R.1    Hunt, K.2
  • 42
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.K. Learning representations by backpropagating errors. Nature. 323(9):1986;533-536.
    • (1986) Nature , vol.323 , Issue.9 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.K.3
  • 43
    • 0028374275 scopus 로고
    • Robot juggling: An implementation of memory-based learning
    • Schaal S., Atkeson C.G. Robot juggling. An implementation of memory-based learning IEEE Control Systems. 14(1):1994;57-71.
    • (1994) IEEE Control Systems , vol.14 , Issue.1 , pp. 57-71
    • Schaal, S.1    Atkeson, C.G.2
  • 44
    • 0026883988 scopus 로고
    • Gain scheduling: potential hazards and possible remedies
    • J.S. Shamma, M. Athans, Gain scheduling: potential hazards and possible remedies, IEEE Control Systems Mag. (1992) 101-107.
    • (1992) IEEE Control Systems Mag. , pp. 101-107
    • Shamma, J.S.1    Athans, M.2
  • 46
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. Ser. B. 36(1):1974;111-147.
    • (1974) J. Roy. Statist. Soc. Ser. B , vol.36 , Issue.1 , pp. 111-147
    • Stone, M.1
  • 47
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • Sugeno M., Kang G.T. Structure identification of fuzzy model. Fuzzy Sets and Systems. 28:1988;15-33.
    • (1988) Fuzzy Sets and Systems , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 48
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. System, Man Cybernet. 15(1):1985;116-132.
    • (1985) IEEE Trans. System, Man Cybernet. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 49
    • 0026644930 scopus 로고
    • Stability analysis and design of fuzzy control systems
    • Tanaka K., Sugeno M. Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems. 45:1992;135-156.
    • (1992) Fuzzy Sets and Systems , vol.45 , pp. 135-156
    • Tanaka, K.1    Sugeno, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.