메뉴 건너뛰기




Volumn 9, Issue 1, 2012, Pages 121-140

Fuzzy linear regression based on least absolutes deviations

Author keywords

Fuzzy regression; Goodness of fit; Least absolutes deviations; Metric on fuzzy numbers; Similarity measure

Indexed keywords


EID: 84863986539     PISSN: 17350654     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (64)

References (38)
  • 1
    • 76349093533 scopus 로고    scopus 로고
    • Estimating the parameters of a fuzzy linear regression model
    • A. R. Arabpour and M. Tata, Estimating the parameters of a fuzzy linear regression model, Iranian Journal of Fuzzy Systems, 5 (2008), 1-20.
    • (2008) Iranian Journal of Fuzzy Systems , vol.5 , pp. 1-20
    • Arabpour, A.R.1    Tata, M.2
  • 3
    • 0001190023 scopus 로고
    • Least squares model fitting to fuzzy vector data
    • A. Celmins, Least squares model fitting to fuzzy vector data, Fuzzy Sets and Systems, 22 (1987), 260-269.
    • (1987) Fuzzy Sets and Systems , vol.22 , pp. 260-269
    • Celmins, A.1
  • 4
    • 84908496687 scopus 로고    scopus 로고
    • A least-absolutes approach to multiple fuzzy regression
    • Dublin, Ireland, CPS077-01
    • J. Chachi and S. M. Taheri, A least-absolutes approach to multiple fuzzy regression, In: Proc. of 58th ISI Congress, Dublin, Ireland, (2011), CPS077-01.
    • (2011) Proc. of 58th ISI Congress
    • Chachi, J.1    Taheri, S.M.2
  • 6
  • 7
    • 34248994889 scopus 로고    scopus 로고
    • A mathematical programming method for formulating a fuzzy regression model based on distance criterion
    • L. H. Chen and C. C. Hsueh, A mathematical programming method for formulating a fuzzy regression model based on distance criterion, IEEE Transactions on Systems, Man, Cybernetics B, 37 (2007), 705-712.
    • (2007) IEEE Transactions on Systems, Man, Cybernetics B , vol.37 , pp. 705-712
    • Chen, L.H.1    Hsueh, C.C.2
  • 8
    • 72649101229 scopus 로고    scopus 로고
    • Fuzzy regression models using the least-squares method based on the concept of distance
    • L. H. Chen and C. C. Hsueh, Fuzzy regression models using the least-squares method based on the concept of distance, IEEE Transactions on Fuzzy Systems, 17 (2009), 1259-1272.
    • (2009) IEEE Transactions On Fuzzy Systems , vol.17 , pp. 1259-1272
    • Chen, L.H.1    Hsueh, C.C.2
  • 9
    • 38949166681 scopus 로고    scopus 로고
    • Fuzzy regression using least absolute deviation estimators
    • S. H. Choi and J. J. Buckley, Fuzzy regression using least absolute deviation estimators, Soft Computing, 12 (2008), 257-263.
    • (2008) Soft Computing , vol.12 , pp. 257-263
    • Choi, S.H.1    Buckley, J.J.2
  • 12
    • 0010012315 scopus 로고
    • Least squares fitting of several fuzzy variables
    • Tokyo
    • P. Diamond, Least squares fitting of several fuzzy variables, In: Proc. of Second IFSA Congress, Tokyo, (1987), 20-25.
    • (1987) Proc. of Second IFSA Congress , pp. 20-25
    • Diamond, P.1
  • 14
    • 33748061677 scopus 로고    scopus 로고
    • Goodness of fit and variable selecion in the fuzzy multiple linear regression
    • P. D'Urso and A. Santoro, Goodness of fit and variable selecion in the fuzzy multiple linear regression, Fuzzy Sets and Systems, 157 (2006), 2627-2647.
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 2627-2647
    • D'Urso, P.1    Santoro, A.2
  • 17
    • 75149173380 scopus 로고    scopus 로고
    • A goal programming approach to fuzzy linear regresion with non-fuzzy input and fuzzy output data
    • H. Hassanpour, H. R. Maleki and M. A. Yaghoobi, A goal programming approach to fuzzy linear regresion with non-fuzzy input and fuzzy output data, Asia-Pacific Journal of Operational Research, 26 (2009), 587-604.
    • (2009) Asia-Pacific Journal of Operational Research , vol.26 , pp. 587-604
    • Hassanpour, H.1    Maleki, H.R.2    Yaghoobi, M.A.3
  • 18
    • 77958468495 scopus 로고    scopus 로고
    • Fuzzy linear regression model with crisp coefficients: A goal programming approach
    • H. Hassanpour, H. R. Maleki and M. A. Yaghoobi, Fuzzy linear regression model with crisp coefficients: a goal programming approach, Iranian Journal of Fuzzy Systems, 7 (2010), 19-39.
    • (2010) Iranian Journal of Fuzzy Systems , vol.7 , pp. 19-39
    • Hassanpour, H.1    Maleki, H.R.2    Yaghoobi, M.A.3
  • 19
    • 0037117204 scopus 로고    scopus 로고
    • A fuzzy linear regesion model with better explanatory power
    • C. Kao and C. L. Chyu, A fuzzy linear regesion model with better explanatory power, Fuzzy Sets and Systems, 126 (2002), 401-409.
    • (2002) Fuzzy Sets and Systems , vol.126 , pp. 401-409
    • Kao, C.1    Chyu, C.L.2
  • 20
    • 0000662569 scopus 로고    scopus 로고
    • Evalaution of fuzzy linear regresssion models by comparing membership functions
    • B. Kim and R. R. Bishu, Evalaution of fuzzy linear regresssion models by comparing membership functions, Fuzzy Sets and Systems, 100 (1998), 343-352.
    • (1998) Fuzzy Sets and Systems , vol.100 , pp. 343-352
    • Kim, B.1    Bishu, R.R.2
  • 22
    • 0345698915 scopus 로고    scopus 로고
    • Linear regression with random fuzzy variables extended classical estimates, best linear estimates, least squares estimates
    • R. Körner and W. Näther, Linear regression with random fuzzy variables extended classical estimates, best linear estimates, least squares estimates, Information Sciences, 109 (1998), 95-118.
    • (1998) Information Sciences , vol.109 , pp. 95-118
    • Körner, R.1    Näther, W.2
  • 23
    • 29844445683 scopus 로고    scopus 로고
    • Pedomodels fitting with fuzzy least squares regression
    • J. Mohammadi and S. M. Taheri, Pedomodels fitting with fuzzy least squares regression, Iranian Journal of Fuzzy Systems, 1 (2004), 45-61.
    • (2004) Iranian Journal of Fuzzy Systems , vol.1 , pp. 45-61
    • Mohammadi, J.1    Taheri, S.M.2
  • 24
    • 0009981746 scopus 로고
    • A comparative assessment of measure of similarity of fuzzy values
    • C. P. Pappis and N. I. Karacapilidis, A comparative assessment of measure of similarity of fuzzy values, Fuzzy Sets and Systems, 56 (1993), 171-174.
    • (1993) Fuzzy Sets and Systems , vol.56 , pp. 171-174
    • Pappis, C.P.1    Karacapilidis, N.I.2
  • 25
    • 79955003085 scopus 로고    scopus 로고
    • Fuzzy logistic regression: A new possibilistic model and its application in clinical vague status
    • S. Pourahmad, S. M. T. Ayatollahi and S. M. Taheri, Fuzzy logistic regression: a new possibilistic model and its application in clinical vague status, Iranian Journal of Fuzzy Systems, 8 (2011), 1-17.
    • (2011) Iranian Journal of Fuzzy Systems , vol.8 , pp. 1-17
    • Pourahmad, S.1    Ayatollahi, S.M.T.2    Taheri, S.M.3
  • 29
    • 0001563202 scopus 로고
    • Multiobjective fuzzy linear regression analysis for fuzzy input-output data
    • M. Sakawa and H. Yano, Multiobjective fuzzy linear regression analysis for fuzzy input-output data, Fuzzy Sets and Systems, 47 (1992), 173-181.
    • (1992) Fuzzy Sets and Systems , vol.47 , pp. 173-181
    • Sakawa, M.1    Yano, H.2
  • 34
    • 0002906641 scopus 로고    scopus 로고
    • On a class of fuzzy c-numbers clustering procedures for fuzzy data
    • M. S. Yang and C. H. Ko, On a class of fuzzy c-numbers clustering procedures for fuzzy data, Fuzzy Sets and Systems, 84 (1996), 49-60.
    • (1996) Fuzzy Sets and Systems , vol.84 , pp. 49-60
    • Yang, M.S.1    Ko, C.H.2
  • 36
    • 0037117193 scopus 로고    scopus 로고
    • Fuzzy least-squares linear regression analysis for fuzzy input-output data
    • M. S. Yang and T. S. Lin, Fuzzy least-squares linear regression analysis for fuzzy input-output data, Fuzzy Sets and Systems, 126 (2002), 389-399.
    • (2002) Fuzzy Sets and Systems , vol.126 , pp. 389-399
    • Yang, M.S.1    Lin, T.S.2
  • 37
    • 0000570996 scopus 로고    scopus 로고
    • A linear regression model using triangular fuzzy number coefficient
    • K. K. Yen, G. Ghoshray and G. Roig, A linear regression model using triangular fuzzy number coefficient, Fuzzy Sets and Systems, 106 (1999), 167-177.
    • (1999) Fuzzy Sets and Systems , vol.106 , pp. 167-177
    • Yen, K.K.1    Ghoshray, G.2    Roig, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.