메뉴 건너뛰기




Volumn 8, Issue 1, 2011, Pages 1-17

Fuzzy logistic regression: A new possibilistic model and its application in clinical vague status

Author keywords

Clinical research; Fuzzy logistic regression; Logistic regression; Possibilistic odds

Indexed keywords


EID: 79955003085     PISSN: 17350654     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (45)

References (26)
  • 2
    • 76349093533 scopus 로고    scopus 로고
    • Estimating the parameters of a fuzzy linear regression model
    • A. R. Arabpour and M. Tata, Estimating the parameters of a fuzzy linear regression model, Iranian Journal ofFuzzy Systems, 5 (2008), 1-19.
    • (2008) Iranian Journal Of Fuzzy Systems , vol.5 , pp. 1-19
    • Arabpour, A.R.1    Tata, M.2
  • 3
    • 0034832960 scopus 로고    scopus 로고
    • Logistic regression in the medical literature: Standards for use and reporting with particular attention to one medical domain
    • S. C. Bagley, H. White and B. A. Golomb, Logistic regression in the medical literature: standards for use and reporting with particular attention to one medical domain, Journal of Clinical Epidemiology, 54 (2001), 979-985.
    • (2001) Journal of Clinical Epidemiology , vol.54 , pp. 979-985
    • Bagley, S.C.1    White, H.2    Golomb, B.A.3
  • 4
    • 0001190023 scopus 로고
    • Least squares model fitting to fuzzy vector data
    • Celmins, Least squares model fitting to fuzzy vector data, Fuzzy Sets and Systems, 22 (1987), 260-269.
    • (1987) Fuzzy Sets and Systems , vol.22 , pp. 260-269
  • 6
    • 0010012315 scopus 로고
    • Least squares fitting of several fuzzy variables
    • Tokyo
    • P. Diamond, Least squares fitting of several fuzzy variables, Proc. ofthe Second IFSA Congress, Tokyo, (1987), 20-25.
    • (1987) Proc. Of the Second IFSA Congre , pp. 20-25
    • Diamond, P.1
  • 10
    • 77953578889 scopus 로고    scopus 로고
    • A note on evaluation of fuzzy linear regression models by comparing membership functions
    • H. Hassanpour, H. R. Maleki and M. A. Yaghoobi, A note on evaluation of fuzzy linear regression models by comparing membership functions, Iranian Journal ofFuzzy Systems, 6 (2009), 1-6.
    • (2009) Iranian Journal OfFuzzy Systems , vol.6 , pp. 1-6
    • Hassanpour, H.1    Maleki, H.R.2    Yaghoobi, M.A.3
  • 11
    • 0035480372 scopus 로고    scopus 로고
    • Fuzzy least-squares linear regression analysis using shape preserving operation
    • D. H. Hong, J. Song and H. Y. Do, Fuzzy least-squares linear regression analysis using shape preserving operation, Information Sciences, 138 (2001), 185-193.
    • (2001) Information Sciences , vol.138 , pp. 185-193
    • Hong, D.H.1    Song, J.2    Do, H.Y.3
  • 14
    • 79954992599 scopus 로고    scopus 로고
    • Proc. oft he 7th Seminar on Probability and Stochastic Processes, Isfahan University ofT echnology, Isfahan, Iran
    • S. Mirzaei Yeganeh and S. M. Taheri, Possibilistic logistic regression by linear programming approach, Proc. oft he 7th Seminar on Probability and Stochastic Processes, Isfahan University ofT echnology, Isfahan, Iran, (2009), 139-143.
    • (2009) Possibilistic Logistic Regression By Linear Programming Approach , pp. 139-143
    • Mirzaei, Y.S.1    Taheri, S.M.2
  • 15
    • 29844445683 scopus 로고    scopus 로고
    • Pedomodels fitting with fuzzy least squares regression
    • J. Mohammadi and S. M. Taheri, Pedomodels fitting with fuzzy least squares regression, Iranian Journal ofFuzzy Systems, 1 (2004), 45-61.
    • (2004) Iranian Journal OfFuzzy Systems , vol.1 , pp. 45-61
    • Mohammadi, J.1    Taheri, S.M.2
  • 16
    • 0035418149 scopus 로고    scopus 로고
    • A linear forecasting model and its application in economic data
    • Peters, A linear forecasting model and its application in economic data, Journal ofF orecasting, 20 (2001), 315-328.
    • (2001) Journal Of Forecasting , vol.20 , pp. 315-328
  • 17
    • 0037117205 scopus 로고    scopus 로고
    • Modeling temporal functions with granular regression and fuzzy rule
    • S. Roychowdhury and W. Pedrycz, Modeling temporal functions with granular regression and fuzzy rule, Fuzzy Sets and Systems, 126 (2002), 377-387.
    • (2002) Fuzzy Sets and Systems , vol.126 , pp. 377-387
    • Roychowdhury, S.1    Pedrycz, W.2
  • 19
    • 79954997084 scopus 로고    scopus 로고
    • Fuzzy regression models
    • A. F. Shapiro, Fuzzy regression models, ARC, 2005.
    • (2005) ARC
    • Shapiro, A.F.1
  • 20
    • 0036833506 scopus 로고    scopus 로고
    • A multivariate logistic regression equation to screen for Diabetes
    • B. D. Tabaei, and W. H. Herman, A multivariate logistic regression equation to screen for Diabetes, Diabetes Care, 25 (2002), 1999-2003.
    • (2002) Diabetes Care , vol.25 , pp. 1999-2003
    • Tabaei, B.D.1    Herman, W.H.2
  • 21
    • 22944454401 scopus 로고    scopus 로고
    • Trends in fuzzy statistics
    • Taheri, Trends in fuzzy statistics, Austrian Journal of Statistics, 32 (2003), 239-257.
    • (2003) Austrian Journal of Statistics , vol.32 , pp. 239-257
  • 24
    • 33644587995 scopus 로고    scopus 로고
    • Fast and accurate of gravity defuzzification of fuzzy systems outputs defined on trapezoidsal fuzzy partitions
    • E. Van Broekhoven and B. D. Baets, Fast and accurate of gravity defuzzification of fuzzy systems outputs defined on trapezoidsal fuzzy partitions, Fuzzy Sets and Systems, 157 (2006), 904-918.
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 904-918
    • van Broekhoven, E.1    Baets, B.D.2
  • 25
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
    • (1965) Information and Control , vol.8 , pp. 338-353


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.