메뉴 건너뛰기




Volumn 58, Issue 8, 2012, Pages 5544-5562

Sequential anomaly detection in the presence of noise and limited feedback

Author keywords

Anomaly detection; exponential families; filtering; individual sequences; label efficient prediction; minimax regret; online convex programming (OCP); prediction with limited feedback; sequential probability assignment; universal prediction

Indexed keywords

ANOMALY DETECTION; EXPONENTIAL FAMILY; INDIVIDUAL SEQUENCES; LIMITED FEEDBACK; MINIMAX REGRET; ONLINE CONVEX PROGRAMMING (OCP); PROBABILITY ASSIGNMENT;

EID: 84863971090     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2012.2201375     Document Type: Article
Times cited : (59)

References (44)
  • 1
    • 33845204969 scopus 로고
    • The call of Cthulhu
    • Feb.
    • H. P. Lovecraft, "The call of Cthulhu," Weird Tales, vol. 11, no. 2, pp. 159-178, Feb. 1928.
    • (1928) Weird Tales , vol.11 , Issue.2 , pp. 159-178
    • Lovecraft, H.P.1
  • 3
    • 84988300338 scopus 로고    scopus 로고
    • Dynamics of Bayesian updating with dependent data and mispecified models
    • C. R. Shalizi, "Dynamics of Bayesian updating with dependent data and mispecified models," Electron. J. Statist., vol. 3, pp. 1039-1074, 2009.
    • (2009) Electron. J. Statist. , vol.3 , pp. 1039-1074
    • Shalizi, C.R.1
  • 4
  • 5
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient descent
    • M. Zinkevich, "Online convex programming and generalized infinitesimal gradient descent," in Proc. Int. Conf. Mach. Learn., 2003, pp. 928-936.
    • (2003) Proc. Int. Conf. Mach. Learn. , pp. 928-936
    • Zinkevich, M.1
  • 7
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle, "Mirror descent and nonlinear projected subgradient methods for convex optimization," Oper. Res. Lett., vol. 31, pp. 167-175, 2003.
    • (2003) Oper. Res. Lett. , vol.31 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 8
    • 70449503911 scopus 로고    scopus 로고
    • Sequential probability assignment via online convex programming using exponential families
    • M. Raginsky, R. Marcia, J. Silva, and R. Willett, "Sequential probability assignment via online convex programming using exponential families," in Proc. IEEE Int. Symp. Inf. Theory, 2009, pp. 1338-1342.
    • (2009) Proc. IEEE Int. Symp. Inf. Theory , pp. 1338-1342
    • Raginsky, M.1    Marcia, R.2    Silva, J.3    Willett, R.4
  • 10
    • 21844462364 scopus 로고    scopus 로고
    • A classification framework for anomaly detection
    • I. Steinwart, D. Hush, and C. Scovel, "A classification framework for anomaly detection," J. Mach. Learn. Res., vol. 6, pp. 211-232, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 211-232
    • Steinwart, I.1    Hush, D.2    Scovel, C.3
  • 12
    • 0031478562 scopus 로고    scopus 로고
    • On nonparametric estimation of density level sets
    • A. B. Tsybakov, "On nonparametric estimation of density level sets," Ann. Statist., vol. 25, no. 3, pp. 948-969, 1997.
    • (1997) Ann. Statist. , vol.25 , Issue.3 , pp. 948-969
    • Tsybakov, A.B.1
  • 17
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, "Robust stochastic approximation approach to stochastic programming," SIAM J. Optim., vol. 19, no. 4, pp. 1574-1609, 2009.
    • (2009) SIAM J. Optim. , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 19
    • 49949144765 scopus 로고
    • The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming
    • L. M. Bregman, "The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming," Comput.Math.Math. Phys., vol. 7, pp. 200-217, 1967.
    • (1967) Comput.Math.Math. Phys. , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 22
    • 79953129842 scopus 로고    scopus 로고
    • Online convex programming and regularization in adaptive control
    • Atlanta, GA, Dec.
    • M. Raginsky, A. Rakhlin, and S. Yüksel, "Online convex programming and regularization in adaptive control," in IEEE Conf. Decis. Control, Atlanta, GA, Dec. 2010, pp. 1957-1962.
    • (2010) IEEE Conf. Decis. Control , pp. 1957-1962
    • Raginsky, M.1    Rakhlin, A.2    Yüksel, S.3
  • 24
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • M. J. Wainwright and M. I. Jordan, "Graphical models, exponential families, and variational inference," Foundations Trends Mach. Learn., vol. 1, no. 1-2, pp. 1-305, 2008.
    • (2008) Foundations Trends Mach. Learn. , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 25
    • 0000404653 scopus 로고
    • Approximation of density functions by sequences of exponential families
    • A. R. Barron and C.-H. Sheu, "Approximation of density functions by sequences of exponential families," Ann. Statist., vol. 19, no. 3, pp. 1347-1369, 1991.
    • (1991) Ann. Statist. , vol.19 , Issue.3 , pp. 1347-1369
    • Barron, A.R.1    Sheu, C.-H.2
  • 27
    • 0035370926 scopus 로고    scopus 로고
    • Relative loss bounds for on-line density estimation with the exponential family of distributions
    • DOI 10.1023/A:1010896012157
    • K. S. Azoury and M. K. Warmuth, "Relative loss bounds for on-line density estimation with the exponential family of distributions," Mach. Learn., vol. 43, pp. 211-246, 2001. (Pubitemid 32471833)
    • (2001) Machine Learning , vol.43 , Issue.3 , pp. 211-246
    • Azoury, K.S.1    Warmuth, M.K.2
  • 28
    • 0035443342 scopus 로고    scopus 로고
    • Universal prediction of individual binary sequences in the presence of noise
    • DOI 10.1109/18.945240, PII S0018944801054517
    • T. Weissman and N. Merhav, "Universal prediction of individual binary sequences in the presence of noise," IEEE Trans. Inf. Theory, vol. 47, no. 6, pp. 2151-2173, Sep. 2001. (Pubitemid 32949879)
    • (2001) IEEE Transactions on Information Theory , vol.47 , Issue.6 , pp. 2151-2173
    • Weissman, T.1    Merhav, N.2
  • 29
    • 0025430804 scopus 로고
    • Information-theoretic asymptotics of Bayes methods
    • May
    • B. S. Clarke and A. R. Barron, "Information-theoretic asymptotics of Bayes methods," IEEE Trans. Inf. Theory, vol. 36, no. 3, pp. 453-471, May 1990.
    • (1990) IEEE Trans. Inf. Theory , vol.36 , Issue.3 , pp. 453-471
    • Clarke, B.S.1    Barron, A.R.2
  • 30
    • 0032137328 scopus 로고    scopus 로고
    • Tracking the best expert
    • DOI 10.1023/A:1007424614876
    • M. Herbster and M. K. Warmuth, "Tracking the best expert," Mach. Learn., vol. 32, no. 2, pp. 151-178, 1998. (Pubitemid 40626079)
    • (1998) Machine Learning , vol.32 , Issue.2 , pp. 151-178
    • Herbster, M.1    Warmuth, M.K.2
  • 31
    • 0042496213 scopus 로고    scopus 로고
    • Tracking the best linear predictor
    • DOI 10.1162/153244301753683726
    • M. Herbster and M. K. Warmuth, "Tracking the best linear predictor," J. Mach. Learn. Res., vol. 1, pp. 281-309, 2001. (Pubitemid 33687205)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.4 , pp. 281-309
    • Herbster, M.1    Warmuth, M.K.2
  • 32
    • 0001153192 scopus 로고    scopus 로고
    • Coding for a binary independent piecewise-identically-distributed source
    • PII S0018944896068903
    • F. M. J. Willems, "Coding for a binary independent piecewise-identically-distributed source," IEEE Trans. Inf. Theory, vol. 42, no. 11, pp. 2210-2217, Nov. 1996. (Pubitemid 126771547)
    • (1996) IEEE Transactions on Information Theory , vol.42 , Issue.6 PART 2 , pp. 2210-2217
    • Willems, F.M.J.1
  • 33
    • 0032628233 scopus 로고    scopus 로고
    • Low-complexity sequential lossless coding for piecewise-stationary memoryless sources
    • Jul.
    • G. I. Shamir and N. Merhav, "Low-complexity sequential lossless coding for piecewise-stationary memoryless sources," IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 1498-1519, Jul. 1999.
    • (1999) IEEE Trans. Inf. Theory , vol.45 , Issue.7 , pp. 1498-1519
    • Shamir, G.I.1    Merhav, N.2
  • 34
    • 0027696297 scopus 로고
    • On the minimum description length principle with piecewise constant parameters
    • Nov.
    • N. Merhav, "On the minimum description length principle with piecewise constant parameters," IEEE Trans. Inf. Theory, vol. 39, no. 11, pp. 1962-1967, Nov. 1993.
    • (1993) IEEE Trans. Inf. Theory , vol.39 , Issue.11 , pp. 1962-1967
    • Merhav, N.1
  • 35
    • 20544462399 scopus 로고    scopus 로고
    • Minimizing regret with label efficient prediction
    • DOI 10.1109/TIT.2005.847729
    • N. Cesa-Bianchi, G. Lugosi, and G. Stoltz, "Minimizing regret with label efficient prediction," IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 2152-2162, Jun. 2005. (Pubitemid 40843632)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.6 , pp. 2152-2162
    • Cesa-Bianchi, N.1    Lugosi, G.2    Stoltz, G.3
  • 37
    • 84863935790 scopus 로고    scopus 로고
    • WGBH educational foundation
    • WGBH educational foundation, 2010 [Online]. Available: http://www. pbs.org/wgbh/pages/frontline/shows/blackout/california/timeline.html
    • (2010)
  • 39
    • 84863900647 scopus 로고    scopus 로고
    • cnn.com
    • cnn.com, 2001 [Online]. Available: http://archives.cnn.com/2001/US/05/08/ calif.power.crisis.02/
    • (2001)
  • 41
    • 33744544478 scopus 로고    scopus 로고
    • Log-determinant relaxation for approximate inference in discrete Markov random fields
    • DOI 10.1109/TSP.2006.874409
    • M. J. Wainwright and M. I. Jordan, "Log-determinant relaxation for approximate inference in discrete Markov random fields," IEEE Trans. Signal Process., vol. 54, no. 6, pp. 2099-2109, Jun. 2006. (Pubitemid 43811404)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.6 , pp. 2099-2109
    • Wainwright, M.J.1    Jordan, M.I.2
  • 42
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • O. Banerjee, L. El Ghaoui, and A. d'Aspremont, "Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data," J. Mach. Learn. Res., vol. 9, pp. 485-516, 2008. (Pubitemid 351469014)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 43
    • 77951455815 scopus 로고    scopus 로고
    • High-dimensional Ising model selection using-regularized logistic regression
    • P. Ravikumar, M. J. Wainwright, and J. Lafferty, "High-dimensional Ising model selection using-regularized logistic regression," Ann. Statist., vol. 38, no. 3, pp. 1287-1319, 2010.
    • (2010) Ann. Statist. , vol.38 , Issue.3 , pp. 1287-1319
    • Ravikumar, P.1    Wainwright, M.J.2    Lafferty, J.3
  • 44
    • 66549109770 scopus 로고    scopus 로고
    • Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods
    • H. Höfling and R. Tibshirani, "Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods," J. Mach. Learn. Res., vol. 10, pp. 883-906, 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 883-906
    • Höfling, H.1    Tibshirani, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.