메뉴 건너뛰기




Volumn 14, Issue 4, 2012, Pages 1127-1132

Fuzzy identification of nonlinear systems via orthogonal transform

Author keywords

fuzzy competitive learning; fuzzy model; non linear systems; Orthogonal transforms

Indexed keywords

FUZZY INFERENCE; FUZZY RULES; LEARNING ALGORITHMS; LINEAR SYSTEMS; MATHEMATICAL TRANSFORMATIONS; NONLINEAR SYSTEMS;

EID: 84863851606     PISSN: 15618625     EISSN: 19346093     Source Type: Journal    
DOI: 10.1002/asjc.404     Document Type: Article
Times cited : (3)

References (16)
  • 1
    • 4344594491 scopus 로고    scopus 로고
    • Design of adaptive Takagi-Sugeno-Kang fuzzy models
    • Kukolj, D., " Design of adaptive Takagi-Sugeno-Kang fuzzy models," Appl. Soft Comput., Vol. 1, No. 1, pp. 89-103 (2002).
    • (2002) Appl. Soft Comput. , vol.1 , Issue.1 , pp. 89-103
    • Kukolj, D.1
  • 2
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi, T., and, M. Sugeno, " Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst. Man Cybern., Vol. 15, No. 1, pp. 116-132 (1985).
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 3
    • 0000636549 scopus 로고    scopus 로고
    • A clustering algorithm for fuzzy model identification
    • Chen, J. Q., and, Y. Q. Xi, " A clustering algorithm for fuzzy model identification," Fuzzy Sets Syst., Vol. 98, No. 3, pp. 319-329 (1998).
    • (1998) Fuzzy Sets Syst. , vol.98 , Issue.3 , pp. 319-329
    • Chen, J.Q.1    Xi, Y.Q.2
  • 4
    • 33845526457 scopus 로고    scopus 로고
    • A hybrid fuzzy model in nonlinear system modelling
    • Dongwon, K., and, G.-T. Park, " A hybrid fuzzy model in nonlinear system modelling," J. Intell. Fuzzy Syst., Vol. 17, No. 5, pp. 417-430 (2006).
    • (2006) J. Intell. Fuzzy Syst. , vol.17 , Issue.5 , pp. 417-430
    • Dongwon, K.1    Park, G.-T.2
  • 5
    • 33645807844 scopus 로고    scopus 로고
    • A min-max approach to fuzzy clustering, estimation, and identification
    • Kumar, M., R. Stoll, and, N. Stoll, " A min-max approach to fuzzy clustering, estimation, and identification," IEEE Trans. Fuzzy Syst., Vol. 14, No. 2, pp. 248-262 (2006).
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.2 , pp. 248-262
    • Kumar, M.1    Stoll, R.2    Stoll, N.3
  • 6
    • 34047185979 scopus 로고    scopus 로고
    • Fuzzy identification on the basis of regression models of parametric membership function
    • Shtovba, S. D., " Fuzzy identification on the basis of regression models of parametric membership function," J. Autom. Inf. Sci., Vol. 38, No. 11, pp. 36-44 (2006).
    • (2006) J. Autom. Inf. Sci. , vol.38 , Issue.11 , pp. 36-44
    • Shtovba, S.D.1
  • 7
    • 36549051694 scopus 로고    scopus 로고
    • A hybrid fuzzy adaptive sampling-run rules for Shewhart control charts
    • Zarandi, M. H., A. F. Alaeddini, and, I. B. Turksen, " A hybrid fuzzy adaptive sampling-run rules for Shewhart control charts," Inf. Sci., Vol. 178, No. 4, pp. 1152-1170 (2008).
    • (2008) Inf. Sci. , vol.178 , Issue.4 , pp. 1152-1170
    • Zarandi, M.H.1    Alaeddini, A.F.2    Turksen, I.B.3
  • 8
    • 35349029046 scopus 로고    scopus 로고
    • Development of a self-organized neuro-fuzzy model for system identification
    • Yang, S. M., C. J. Chen, Y. Y. Chang, and, Y. Z. Tung, " Development of a self-organized neuro-fuzzy model for system identification," J. Vib. Acoust.-Trans. ASME., Vol. 129, No. 4, pp. 507-513 (2007).
    • (2007) J. Vib. Acoust.-Trans. ASME. , vol.129 , Issue.4 , pp. 507-513
    • Yang, S.M.1    Chen, C.J.2    Chang, Y.Y.3    Tung, Y.Z.4
  • 9
    • 35348824955 scopus 로고    scopus 로고
    • A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems
    • Juang, C.-F., S.-H. Chiu, and, Chang S-W, " A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems," IEEE Trans. Fuzzy Syst., Vol. 15, No. 5, pp. 998-1008 (2007).
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.5 , pp. 998-1008
    • Juang, C.-F.1    Chiu, S.-H.2    Chang, S.-W.3
  • 11
    • 0029236367 scopus 로고
    • Compatible cluster merging for fuzzy modeling
    • Yokohama, Japan
    • Kaymak, U., and, R Babuška, " Compatible cluster merging for fuzzy modeling." in Proc. FUZZ-IEEE/IFES'95, Yokohama, Japan, pp. 897-904 (1995).
    • (1995) Proc. FUZZ-IEEE/IFES'95 , pp. 897-904
    • Kaymak, U.1    Babuška, R.2
  • 12
    • 0012973946 scopus 로고    scopus 로고
    • Extended fuzzy c-means with volume prototypes and cluster merging
    • Aachen, Germany
    • Setnes, M., and, U. Kaymak, " Extended fuzzy c-means with volume prototypes and cluster merging." Proc. 6th Eur. Cong. Soft Comput. Intell. Technol., Aachen, Germany, pp. 1360-1364 (1998).
    • (1998) Proc. 6th Eur. Cong. Soft Comput. Intell. Technol. , pp. 1360-1364
    • Setnes, M.1    Kaymak, U.2
  • 13
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen, C. F., N. Cowan, and, P. M. Grant, " Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., Vol. 2, pp. 302-309 (1991).
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 302-309
    • Chen, C.F.1    Cowan, N.2    Grant, P.M.3
  • 14
    • 0032681147 scopus 로고    scopus 로고
    • A recurrent self-organizing neural fuzzy
    • Juang, C.-F., and, C.-T. Lin, " A recurrent self-organizing neural fuzzy," IEEE Trans. Neural Netw., Vol. 10, No. 4, pp. 828-845 (1999).
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.4 , pp. 828-845
    • Juang, C.-F.1    Lin, C.-T.2
  • 15
    • 60649094543 scopus 로고    scopus 로고
    • Fuzzy clustering method for generating fuzzy models
    • Wang, H., and, G. Hong, " Fuzzy clustering method for generating fuzzy models," Asian J. Control, Vol. 10, No. 6, pp. 687-697 (2008).
    • (2008) Asian J. Control , vol.10 , Issue.6 , pp. 687-697
    • Wang, H.1    Hong, G.2
  • 16
    • 22044439400 scopus 로고    scopus 로고
    • Clustered based Takagi-Sugeno Neuro-fuzzy modeling of a multivariable nonlinear dynamic system
    • Al-Gallaf EA, " Clustered based Takagi-Sugeno Neuro-fuzzy modeling of a multivariable nonlinear dynamic system," Asian J. Control, Vol. 7, No. 2, pp. 163-176 (2005).
    • (2005) Asian J. Control , vol.7 , Issue.2 , pp. 163-176
    • Al-Gallaf, E.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.