메뉴 건너뛰기




Volumn 17, Issue 5, 2006, Pages 417-430

A hybrid fuzzy model in nonlinear system modeling

Author keywords

Fuzzy systems; Hybrid fuzzy model; Nonlinear system modeling; Overfitting and underfitting; Self organizing approximator

Indexed keywords

LEARNING ALGORITHMS; NEURAL NETWORKS; NONLINEAR SYSTEMS; POLYNOMIAL APPROXIMATION; PROBLEM SOLVING; RELIABILITY THEORY;

EID: 33845526457     PISSN: 10641246     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (32)
  • 1
    • 0028424238 scopus 로고
    • An on-line identification algorithm for fuzzy systems
    • J.Q. Chen and L.J. Chen, An on-line identification algorithm for fuzzy systems, Fuzzy Sets and Sytems 64 (1994), 63-72.
    • (1994) Fuzzy Sets and Sytems , vol.64 , pp. 63-72
    • Chen, J.Q.1    Chen, L.J.2
  • 2
    • 0026925677 scopus 로고
    • Fuzzy controllers based on temporal back propagation
    • J.R. Jang, Fuzzy controllers based on temporal back propagation, IEEE Trans. Neural Networks 3 (1992), 714-723.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 714-723
    • Jang, J.R.1
  • 3
    • 0026366218 scopus 로고
    • Neural network based fuzzy logic control and decision system
    • C.T. Lin and C.S.G. Lee, Neural network based fuzzy logic control and decision system, IEEE Trans. Comput. 40 (1991), 1320-1336.
    • (1991) IEEE Trans. Comput. , vol.40 , pp. 1320-1336
    • Lin, C.T.1    Lee, C.S.G.2
  • 5
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • 1992
    • L.X. Wang and J.M. Mendel, Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Trans. Neural Networks 3 (1992), 807-814, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 6
    • 0012045480 scopus 로고
    • Fuzzy neural networks: A survey
    • J.J. Buckley and Y. Hayashi, Fuzzy neural networks: A survey, Fuzzy Sets Syst. 66 (1994), 1-13.
    • (1994) Fuzzy Sets Syst. , vol.66 , pp. 1-13
    • Buckley, J.J.1    Hayashi, Y.2
  • 7
    • 0028268852 scopus 로고
    • On the principles of fuzzy neural networks
    • M.M Gupta and D.H. Rao, On the principles of fuzzy neural networks, Fuzzy Sets Syst. 61 (1994), 1-18.
    • (1994) Fuzzy Sets Syst. , vol.61 , pp. 1-18
    • Gupta, M.M.1    Rao, D.H.2
  • 8
    • 0032070502 scopus 로고    scopus 로고
    • Nonlinear system modeling by competitive learning and adaptive fuzzy inference system
    • J.Q. Chen and X.G. Xi, Nonlinear system modeling by competitive learning and adaptive fuzzy inference system, IEEE Trans. Syst., Man, Cybern., Part C 28(2) (1998), 231-238.
    • (1998) IEEE Trans. Syst., Man, Cybern., Part C , vol.28 , Issue.2 , pp. 231-238
    • Chen, J.Q.1    Xi, X.G.2
  • 9
    • 0029182227 scopus 로고
    • Decision-based neural networks with signal/image classification application
    • S.Y. Kung and J.S. Taur, Decision-based neural networks with signal/image classification application, IEEE Trans. Neural Networks 6 (1995), 170-181.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 170-181
    • Kung, S.Y.1    Taur, J.S.2
  • 10
    • 0036529715 scopus 로고    scopus 로고
    • The design of self-organizing polynomial neural networks
    • S.K. Oh and W. Pedrycz, The design of self-organizing Polynomial Neural Networks, Inf. Sci. 141 (2002), 237-258.
    • (2002) Inf. Sci. , vol.141 , pp. 237-258
    • Oh, S.K.1    Pedrycz, W.2
  • 12
    • 0038793343 scopus 로고
    • Identification of the mathematical model of a complex system by the self-organization method
    • E. Halfon, ed., New York: Academic, ch. 13
    • A.G. Ivakhnenko, G.I. Krotov and N.A. Ivakhnenko, Identification of the mathematical model of a complex system by the self-organization method, in: Theoretical Systems Ecology: Advances and Case Studies, E. Halfon, ed., New York: Academic, 1970, ch. 13.
    • (1970) Theoretical Systems Ecology: Advances and Case Studies
    • Ivakhnenko, A.G.1    Krotov, G.I.2    Ivakhnenko, N.A.3
  • 14
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-networks-based fuzzy inference system
    • J.S. Jang, ANFIS: Adaptive-networks-based fuzzy inference system, IEEE Trans. Syst., Man, Cybern. 23(3) (1993), 665-685.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.1
  • 16
    • 0000636549 scopus 로고    scopus 로고
    • A clustering algorithm for fuzzy model identification
    • J.Q. Chen, Y.G. Xi and Z.J. Zhang, A clustering algorithm for fuzzy model identification, Fuzzy Sets Syst. 98 (1998), 319-329.
    • (1998) Fuzzy Sets Syst. , vol.98 , pp. 319-329
    • Chen, J.Q.1    Xi, Y.G.2    Zhang, Z.J.3
  • 18
    • 0035481550 scopus 로고    scopus 로고
    • Fuzzy modeling with multivariate membership functions: Gray-box identification and control design
    • J. Abonyi, R. Babuska and F. Szeifert, Fuzzy modeling with multivariate membership functions: Gray-box identification and control design, IEEE Trans. Syst., Man, Cybern. B-vol. 31(53) (2001), 755-767.
    • (2001) IEEE Trans. Syst., Man, Cybern. , vol.B-31 , Issue.53 , pp. 755-767
    • Abonyi, J.1    Babuska, R.2    Szeifert, F.3
  • 19
    • 0000212165 scopus 로고    scopus 로고
    • About the use of fuzzy clustering techniques for fuzzy model identification
    • A.F. Gomez-Skarmeta, M. Delgado and M.A. Vila, About the use of fuzzy clustering techniques for fuzzy model identification," Fuzzy Sets Syst. 106 (1999), 179-188.
    • (1999) Fuzzy Sets Syst. , vol.106 , pp. 179-188
    • Gomez-Skarmeta, A.F.1    Delgado, M.2    Vila, M.A.3
  • 20
    • 0031142216 scopus 로고    scopus 로고
    • A new identification algorithm for fuzzy relationa models and its applications in model-based control
    • B. Posthlethwaite, M. Brown and C. Sing, A new identification algorithm for fuzzy relationa models and its applications in model-based control, Chemical Eng. Res. and Design, Trans IChemE 75A (1997), 453-458.
    • (1997) Chemical Eng. Res. and Design, Trans IChemE , vol.75 A , pp. 453-458
    • Posthlethwaite, B.1    Brown, M.2    Sing, C.3
  • 21
    • 9544258259 scopus 로고    scopus 로고
    • A modified PNN algorithm with optimal PD modeling using the orthogonal least squares method
    • E. Delivopoulos and J.B. Theocharis, A modified PNN algorithm with optimal PD modeling using the orthogonal least squares method, Inf. Sci. 168 (2004), 133-170.
    • (2004) Inf. Sci. , vol.168 , pp. 133-170
    • Delivopoulos, E.1    Theocharis, J.B.2
  • 22
    • 0032141636 scopus 로고    scopus 로고
    • Generating optimal adaptive fuzzy-neural models of dynamical systems with applications to control
    • S. Barada and H. Singh, Generating optimal adaptive fuzzy-neural models of dynamical systems with applications to control, IEEE Trans. Syst., Man, Cybern. SMC-28(3) (1998), 371-391.
    • (1998) IEEE Trans. Syst., Man, Cybern. , vol.SMC-28 , Issue.3 , pp. 371-391
    • Barada, S.1    Singh, H.2
  • 23
    • 0033891209 scopus 로고    scopus 로고
    • Evolutionary design of fuzzy rule base for nonlinear system modeling and control
    • Feb.
    • S.J. Kang, C.H. Woo, H.S. Hwang and K.B. Woo, Evolutionary design of fuzzy rule base for nonlinear system modeling and control, IEEE Trans. Fuzzy Syst. 8(1) (Feb. 2000).
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.1
    • Kang, S.J.1    Woo, C.H.2    Hwang, H.S.3    Woo, K.B.4
  • 24
    • 0032164985 scopus 로고    scopus 로고
    • A simple identified Sugeno-type fuzzy model via double clustering
    • E. Kim, H. Lee, M. Park and M. Park, A simple identified Sugeno-type fuzzy model via double clustering, Inf. Sci. 110 (1998), 25-39.
    • (1998) Inf. Sci. , vol.110 , pp. 25-39
    • Kim, E.1    Lee, H.2    Park, M.3    Park, M.4
  • 25
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural modeling
    • Y. Lin and G.A. Cunningham, III, A new approach to fuzzy-neural modeling, IEEE Trans. Fuzzy Syst. 3(2) (1995), 190-197.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 190-197
    • Lin, Y.1    Cunningham III, G.A.2
  • 27
    • 0242721192 scopus 로고    scopus 로고
    • A novel design of self-organizing approximator technique: An evolutionary approach
    • BEST STUDENT PAPER COMPETITION FINALIST AWARDED PAPER
    • D.W. Kim and G.T. Park, A novel design of self-organizing approximator technique: An evolutionary approach, IEEE Intl. Conf. Syst., Man Cybern, 2003, 4643-4648, (BEST STUDENT PAPER COMPETITION FINALIST AWARDED PAPER).
    • (2003) IEEE Intl. Conf. Syst., Man Cybern , pp. 4643-4648
    • Kim, D.W.1    Park, G.T.2
  • 29
    • 0032291863 scopus 로고    scopus 로고
    • The implementation of fuzzy systems, neural networks and fuzzy neural networks using FPGAs
    • J.J. Blake, L.P. Maguire, T.M. McGinnity, B. Roche and L.J. McDaid, The implementation of fuzzy systems, neural networks and fuzzy neural networks using FPGAs, Inf. Sci. 112 (1998), 151-168.
    • (1998) Inf. Sci. , vol.112 , pp. 151-168
    • Blake, J.J.1    Maguire, L.P.2    McGinnity, T.M.3    Roche, B.4    McDaid, L.J.5
  • 30
    • 0033177661 scopus 로고    scopus 로고
    • Function approximation based on fuzzy rules extracted from partitioned numerical data
    • R. Thawonmas and S. Abe, Function approximation based on fuzzy rules extracted from partitioned numerical data, IEEE Trans. Syst., Man, Cybern. B-vol. 29(4) (1999), 525-534.
    • (1999) IEEE Trans. Syst., Man, Cybern. , vol.B-29 , Issue.4 , pp. 525-534
    • Thawonmas, R.1    Abe, S.2
  • 31
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • S. Wu, M.J. Er and Y. Gao, A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks, IEEE Trans. Fuzzy Syst. 9(4) (2001), 578-594.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 578-594
    • Wu, S.1    Er, M.J.2    Gao, Y.3
  • 32
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm
    • S.I. Horikawa, T. Furuhashi and Y. Uchikawa, On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm, IEEE Trans. Neural Netw. 3(5) (1992), 801-806.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.5 , pp. 801-806
    • Horikawa, S.I.1    Furuhashi, T.2    Uchikawa, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.