메뉴 건너뛰기




Volumn 23, Issue 8, 2012, Pages

The study of using an extreme learning machine for rapid concentration estimation in multi-component gas mixtures

Author keywords

concentration estimation; extreme learning machine; gas mixtures; sensor array

Indexed keywords

BACKPROPAGATION; DATA FLOW ANALYSIS; DEEP NEURAL NETWORKS; GAS DETECTORS; GAS MIXTURES; GASES; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; METALLIC COMPOUNDS; METALS; NEURAL NETWORKS; SENSOR ARRAYS;

EID: 84863826510     PISSN: 09570233     EISSN: 13616501     Source Type: Journal    
DOI: 10.1088/0957-0233/23/8/085101     Document Type: Article
Times cited : (4)

References (28)
  • 2
    • 83555169084 scopus 로고    scopus 로고
    • Artificial neural networks modeling for hydrocarbon gas viscosity and density estimation
    • 10.1016/j.jksues.2011.03.004 1018-3639
    • AlQuraishi A A and Shokir E M 2011 Artificial neural networks modeling for hydrocarbon gas viscosity and density estimation J. King Saud Univ. Eng. Sci. 23 123-9
    • (2011) J. King Saud Univ. Eng. Sci. , vol.23 , Issue.2 , pp. 123-129
    • Alquraishi, A.A.1    Shokir, E.M.2
  • 3
    • 19944379130 scopus 로고    scopus 로고
    • Micro gas sensor array with neural network for recognizing combustible leakage gases
    • DOI 10.1109/JSEN.2005.845186
    • Lee D-S, Ban S-W, Lee M and Lee D-D 2005 Micro gas sensor array with neural network for recognizing combustible leakage gases IEEE Sens. J. 5 530-6 (Pubitemid 40751346)
    • (2005) IEEE Sensors Journal , vol.5 , Issue.3 , pp. 530-536
    • Lee, D.-S.1    Ban, S.-W.2    Lee, M.3    Lee, D.-D.4
  • 4
    • 34247581710 scopus 로고    scopus 로고
    • Quantitative gas mixture analysis using temperature-modulated micro-hotplate gas sensors: Selection and validation of the optimal modulating frequencies
    • DOI 10.1016/j.snb.2006.11.010, PII S0925400506007556
    • Vergara A, Llobet E, Brezmes J, Ivanov P, Cané C, Gràcia I, Vilanova X and Correig X 2007 Quantitative gas mixture analysis using temperature-modulated micro-hotplate gas sensors: selection and validation of the optimal modulating frequencies Sensors Actuators B 123 1002-16 (Pubitemid 46678793)
    • (2007) Sensors and Actuators, B: Chemical , vol.123 , Issue.2 , pp. 1002-1016
    • Vergara, A.1    Llobet, E.2    Brezmes, J.3    Ivanov, P.4    Cane, C.5    Gracia, I.6    Vilanova, X.7    Correig, X.8
  • 5
    • 49549119574 scopus 로고    scopus 로고
    • Wireless electronic nose system for real-time quantitative analysis of gas mixtures using micro-gas sensor array and neuro-fuzzy network
    • 10.1016/j.snb.2008.04.019 0925-4005 B
    • Cho J H, Kim Y W, Na K J and Jeon G J 2008 Wireless electronic nose system for real-time quantitative analysis of gas mixtures using micro-gas sensor array and neuro-fuzzy network Sensors Actuators B 134 104-11
    • (2008) Sensors Actuators , vol.134 , Issue.1 , pp. 104-111
    • Cho, J.H.1    Kim, Y.W.2    Na, K.J.3    Jeon, G.J.4
  • 6
    • 68949166050 scopus 로고    scopus 로고
    • Pattern recognition for sensor array signals using Fuzzy ARTMAP
    • 10.1016/j.snb.2009.06.046 0925-4005 B
    • Xu Z, Shi X, Wang L, Luo J, Zhong C-J and Lu S 2009 Pattern recognition for sensor array signals using Fuzzy ARTMAP Sensors Actuators B 141 458-64
    • (2009) Sensors Actuators , vol.141 , Issue.2 , pp. 458-464
    • Xu, Z.1    Shi, X.2    Wang, L.3    Luo, J.4    Zhong, C.-J.5    Lu, S.6
  • 7
    • 0038578361 scopus 로고    scopus 로고
    • Verification of a logarithmic model for estimation of gas concentrations in a mixture for a tin oxide gas sensor response
    • 10.1016/S0925-4005(03)00311-3 0925-4005 B
    • Hirobayashi S, Kadir M A, Yoshizawa T and Yamabuchi T 2003 Verification of a logarithmic model for estimation of gas concentrations in a mixture for a tin oxide gas sensor response Sensors Actuators B 92 269-78
    • (2003) Sensors Actuators , vol.92 , Issue.3 , pp. 269-278
    • Hirobayashi, S.1    Kadir, M.A.2    Yoshizawa, T.3    Yamabuchi, T.4
  • 8
    • 0035875990 scopus 로고    scopus 로고
    • Application of artificial neural networks to calculate the partial gas concentrations in a mixture
    • DOI 10.1016/S0925-4005(01)00736-5, PII S0925400501007365
    • Martín M A, Santos J P and Agapito J A 2001 Application of artificial neural networks to calculate the partial gas concentrations in a mixture Sensors Actuators B 77 468-71 (Pubitemid 32544387)
    • (2001) Sensors and Actuators, B: Chemical , vol.77 , Issue.1-2 , pp. 468-471
    • Martin, M.A.1    Santos, J.P.2    Agapito, J.A.3
  • 9
    • 33747096301 scopus 로고    scopus 로고
    • Identification of gas mixtures by a distributed support vector machine network and wavelet decomposition from temperature modulated semiconductor gas sensor
    • DOI 10.1016/j.snb.2005.11.037, PII S0925400505009238
    • Ge H and Liu J 2006 Identification of gas mixtures by a distributed support vector machine network and wavelet decomposition from temperature modulated semiconductor gas sensor Sensors Actuators B 117 408-14 (Pubitemid 44302074)
    • (2006) Sensors and Actuators, B: Chemical , vol.117 , Issue.2 , pp. 408-414
    • Ge, H.1    Liu, J.2
  • 10
    • 79251620119 scopus 로고    scopus 로고
    • 3 gas sensing array and least squares support vector regression
    • 10.3390/s110100485 1424-8220
    • 3 gas sensing array and least squares support vector regression Sensors 11 485-505
    • (2011) Sensors , vol.11 , Issue.1 , pp. 485-505
    • Song, K.1    Wang, Q.2    Liu, Q.3    Zhang, H.4    Cheng, Y.5
  • 11
    • 67349097074 scopus 로고    scopus 로고
    • Classification of data from electronic nose using relevance vector machines
    • 10.1016/j.snb.2009.04.030 0925-4005 B
    • Wang X, Ye M and Duanmu C J 2009 Classification of data from electronic nose using relevance vector machines Sensors Actuators B 140 143-8
    • (2009) Sensors Actuators , vol.140 , Issue.1 , pp. 143-148
    • Wang, X.1    Ye, M.2    Duanmu, C.J.3
  • 12
    • 36448942212 scopus 로고    scopus 로고
    • Recognizing indoor formaldehyde in binary gas mixtures with a micro gas sensor array and a neural network
    • DOI 10.1088/0957-0233/18/9/034, PII S0957023307486866
    • Lv P, Tang Z, Wei G, Yu J and Huang Z 2007 Recognizing indoor formaldehyde in binary gas mixtures with a micro gas sensor array and a neural network Meas. Sci. Technol. 18 2997-3004 (Pubitemid 350163588)
    • (2007) Measurement Science and Technology , vol.18 , Issue.9 , pp. 2997-3004
    • Lv, P.1    Tang, Z.2    Wei, G.3    Yu, J.4    Huang, Z.5
  • 13
    • 33846658675 scopus 로고    scopus 로고
    • A study on transient and steady state sensor data for identification of individual gas concentrations in their gas mixtures
    • DOI 10.1016/j.snb.2006.04.100, PII S0925400506003625
    • Gulbag A and Temurtas F 2007 A study on transient and steady state sensor data for identification of individual gas concentrations in their gas mixtures Sensors Actuators B 121 590-9 (Pubitemid 46188682)
    • (2007) Sensors and Actuators, B: Chemical , vol.121 , Issue.2 , pp. 590-599
    • Gulbag, A.1    Temurtas, F.2
  • 14
    • 77957588304 scopus 로고    scopus 로고
    • Application of a sensor array based on capillary-attached conductive gas sensors for odor identification
    • 0957-0233 085204
    • Bahraminejad B, Basri S, Isa M and Hambali Z 2010 Application of a sensor array based on capillary-attached conductive gas sensors for odor identification Meas. Sci. Technol. 21 085204
    • (2010) Meas. Sci. Technol. , vol.21 , Issue.8
    • Bahraminejad, B.1    Basri, S.2    Isa, M.3    Hambali, Z.4
  • 15
    • 79956161144 scopus 로고    scopus 로고
    • Concentration measurement systems with stable solutions for binary gas mixtures using two flowmeters
    • 0957-0233 065401
    • Youn C, Kawashima K and Kagawa T 2011 Concentration measurement systems with stable solutions for binary gas mixtures using two flowmeters Meas. Sci. Technol. 22 065401
    • (2011) Meas. Sci. Technol. , vol.22 , Issue.6
    • Youn, C.1    Kawashima, K.2    Kagawa, T.3
  • 17
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • DOI 10.1016/j.neucom.2005.12.126, PII S0925231206000385
    • Huang G-B, Zhu Q-Y and Siew C-K 2006 Extreme learning machine: theory and applications Neurocomputing 70 489-501 (Pubitemid 44615772)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 18
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • DOI 10.1109/TNN.2006.875977
    • Huang G-B, Chen L and Siew C-K 2006 Universal approximation using incremental constructive feedforward networks with random hidden nodes IEEE Trans. Neural Netw. 17 879-92 (Pubitemid 44194149)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 19
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • DOI 10.1016/j.neucom.2007.02.009, PII S0925231207000677
    • Huang G-B and Chen L 2007 Convex incremental extreme learning machine Neurocomputing 70 3056-62 (Pubitemid 47308612)
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 20
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • 10.1016/j.neucom.2007.10.008 0925-2312
    • Huang G-B and Chen L 2008 Enhanced random search based incremental extreme learning machine Neurocomputing 71 3460-8
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 21
    • 22844440904 scopus 로고    scopus 로고
    • Evolutionary extreme learning machine
    • DOI 10.1016/j.patcog.2005.03.028, PII S0031320305001809
    • Zhu Q-Y, Qin A K, Suganthan P N and Huang G-B 2005 Evolutionary extreme learning machine Pattern Recognit. 38 1759-63 (Pubitemid 41037107)
    • (2005) Pattern Recognition , vol.38 , Issue.10 , pp. 1759-1763
    • Zhu, Q.-Y.1    Qin, A.K.2    Suganthan, P.N.3    Huang, G.-B.4
  • 22
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • 10.1016/j.neucom.2010.02.019 0925-2312
    • Huang G-B, Ding X and Zhou H 2010 Optimization method based extreme learning machine for classification Neurocomputing 74 155-63
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 155-163
    • Huang, G.-B.1    Ding, X.2    Zhou, H.3
  • 23
    • 51649098666 scopus 로고    scopus 로고
    • An enrichment method to detect low concentration formaldehyde
    • 10.1016/j.snb.2008.07.010 0925-4005 B
    • Wang J, Liu L, Cong S-Y, Qi J-Q and Xu B-K 2008 An enrichment method to detect low concentration formaldehyde Sensors Actuators B 134 1010-15
    • (2008) Sensors Actuators , vol.134 , Issue.2 , pp. 1010-1015
    • Wang, J.1    Liu, L.2    Cong, S.-Y.3    Qi, J.-Q.4    Xu, B.-K.5
  • 25
    • 76949107085 scopus 로고    scopus 로고
    • Silicon-based micro-gas sensors for detecting formaldehyde
    • 10.1016/j.snb.2008.12.056 0925-4005 B
    • Wang J, Zhang P, Qi J-Q and Yao P-J 2009 Silicon-based micro-gas sensors for detecting formaldehyde Sensors Actuators B 136 399-404
    • (2009) Sensors Actuators , vol.136 , Issue.2 , pp. 399-404
    • Wang, J.1    Zhang, P.2    Qi, J.-Q.3    Yao, P.-J.4
  • 26
    • 77953914573 scopus 로고    scopus 로고
    • Information-theoretic optimization of chemical sensors
    • 10.1016/j.snb.2010.04.040 0925-4005 B
    • Vergara A, Muezzinoglu M K, Rulkov N and Huerta R 2010 Information-theoretic optimization of chemical sensors Sensors Actuators B 148 298-306
    • (2010) Sensors Actuators , vol.148 , Issue.1 , pp. 298-306
    • Vergara, A.1    Muezzinoglu, M.K.2    Rulkov, N.3    Huerta, R.4
  • 27
    • 78649659993 scopus 로고    scopus 로고
    • Convergence analysis of online gradient method for BP neural networks
    • 10.1016/j.neunet.2010.09.007 0893-6080
    • Wu W, Wang J, Cheng M and Li Z 2011 Convergence analysis of online gradient method for BP neural networks Neural Netw. 24 91-8
    • (2011) Neural Netw. , vol.24 , Issue.1 , pp. 91-98
    • Wu, W.1    Wang, J.2    Cheng, M.3    Li, Z.4
  • 28
    • 67649385962 scopus 로고    scopus 로고
    • Boundedness and convergence of online gradient method with penalty for feedforward neural networks
    • 10.1109/TNN.2009.2020848 1045-9227
    • Zhang H, Wu W, Liu F and Yao M 2009 Boundedness and convergence of online gradient method with penalty for feedforward neural networks IEEE Trans. Neural Netw. 20 1050-4
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.6 , pp. 1050-1054
    • Zhang, H.1    Wu, W.2    Liu, F.3    Yao, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.