메뉴 건너뛰기




Volumn 7, Issue 7, 2012, Pages

CBFS: High performance feature selection algorithm based on feature clearness

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTIC METHOD; ARTICLE; CALCULATION; CLASSIFICATION ALGORITHM; CLEARNESS BASED FEATURE SELECTION ALGORITHM; CLUSTER ANALYSIS; CONTROLLED STUDY; DATA ANALYSIS; DATA SYNTHESIS; MATHEMATICAL COMPUTING; SAMPLE (STATISTICS);

EID: 84863667197     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0040419     Document Type: Article
Times cited : (21)

References (23)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to Variable and Feature Selection
    • Guyon I, Elisseeff A, (2003) An Introduction to Variable and Feature Selection. J Mach Learn Res 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 2
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P, (2007) A review of feature selection techniques in bioinformatics. Bioinformatics l23 (19): 2507-2517.
    • (2007) Bioinformatics , vol.123 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 4
    • 38349127958 scopus 로고    scopus 로고
    • A. Winstanley. Invariant optimal feature selection: A distance discriminant and feature ranking based solution
    • Liang J, Yang S, (2008) A. Winstanley. Invariant optimal feature selection: A distance discriminant and feature ranking based solution. Pattern Recogn 41: 1429-1439.
    • (2008) Pattern Recogn , vol.41 , pp. 1429-1439
    • Liang, J.1    Yang, S.2
  • 5
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and Empirical Analysis of ReliefF and RReliefF
    • Robnik-Sikonja M, Kononenko I, (2003) Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach Learn 53: 23-69.
    • (2003) Mach Learn , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 8
    • 65749083666 scopus 로고    scopus 로고
    • Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using L1 -Constrained Quadratic Programming (Lasso
    • Wainwright MJ, (2009) Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using L1-Constrained Quadratic Programming (Lasso). IEEE Trans Inform Theory 55(5): 2183-2202.
    • (2009) IEEE Trans Inform Theory , vol.55 , Issue.5 , pp. 2183-2202
    • Wainwright, M.J.1
  • 9
    • 78751630028 scopus 로고    scopus 로고
    • A New Feature Evaluation Method Based on Category Overlap
    • Oh S, (2011) A New Feature Evaluation Method Based on Category Overlap. Comput Biol Med 41(2): 115-122.
    • (2011) Comput Biol Med , vol.41 , Issue.2 , pp. 115-122
    • Oh, S.1
  • 10
    • 18144424165 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • Blake C, Merz CJ, (1998) UCI repository of machine learning databases. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml. Accessed 2011 Nov 11.
    • (1998) UCI Machine Learning Repository
    • Blake, C.1    Merz, C.J.2
  • 11
    • 26944491662 scopus 로고
    • Induction of decision trees using ReliefF
    • In: G. Della Riccia, R. Kruse, and R. Viertl (Eds.), CISM Courses and Lectures No. 363. Springer Verlag
    • Kononenko I, Simec E, (1995) Induction of decision trees using ReliefF. In: G. Della Riccia, R. Kruse, and R. Viertl (eds.): Mathematical and Statistical Methods in Artificial Intelligence, CISM Courses and Lectures No. 363. Springer Verlag.
    • (1995) Mathematical and Statistical Methods in Artificial Intelligence
    • Kononenko, I.1    Simec, E.2
  • 12
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM - A Library for Support Vector Machines
    • Chang C, Lin C, (2005) LIBSVM - A Library for Support Vector Machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Accessed 2011 Nov 11.
    • (2005)
    • Chang, C.1    Lin, C.2
  • 13
    • 84925604888 scopus 로고    scopus 로고
    • No Unbiased Estimator of the Variance of K-Fold Cross-Validation
    • Bengio Y, Grandvalet Y, (2004) No Unbiased Estimator of the Variance of K-Fold Cross-Validation. J Mach Learn Res 5: 1089-1105.
    • (2004) J Mach Learn Res , vol.5 , pp. 1089-1105
    • Bengio, Y.1    Grandvalet, Y.2
  • 14
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T, Hart P, (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory 13(1): 21-27.
    • (1967) IEEE Trans Inform Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 16
    • 84874553382 scopus 로고    scopus 로고
    • Accessed, Available 13 January
    • Winarko E, Data Mining, 13 January (2012) Accessed Available: http://ewinarko.staff.ugm.ac.id/blog/? p = 17.
    • (2012) Data Mining , pp. 17
    • Winarko, E.1
  • 17
    • 34250885083 scopus 로고    scopus 로고
    • Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark
    • Guyon I, Li J, Mader T, Pletscher PA, Schneider G, et al. (2007) Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark. Pattern Recogn Lett 28: 1438-1444.
    • (2007) Pattern Recogn Lett , vol.28 , pp. 1438-1444
    • Guyon, I.1    Li, J.2    Mader, T.3    Pletscher, P.A.4    Schneider, G.5
  • 18
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D, Febbo PG, Ross K, Jackson DG, Manola J, et al. (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2): 203-209.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 203-209
    • Singh, D.1    Febbo, P.G.2    Ross, K.3    Jackson, D.G.4    Manola, J.5
  • 19
  • 20
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439): 531.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5
  • 21
    • 0023843391 scopus 로고
    • Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets
    • Gorman RP, Sejnowski TJ, (1988) Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets. Neural Networks 1: 75-89.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 22
    • 43149108659 scopus 로고    scopus 로고
    • Subclass Mapping: Identifying Common Subtypes in Independent Disease Data Sets
    • doi:10.1371/journal.pone.0001195
    • Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP, (2007) Subclass Mapping: Identifying Common Subtypes in Independent Disease Data Sets. PLoS ONE 2(11): e1195 doi:10.1371/journal.pone.0001195.
    • (2007) PLoS ONE , vol.2 , Issue.11
    • Hoshida, Y.1    Brunet, J.P.2    Tamayo, P.3    Golub, T.R.4    Mesirov, J.P.5
  • 23
    • 0035300437 scopus 로고    scopus 로고
    • Transcriptional Gene Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal Tissue Examined by Oligonucleotide Arrays
    • Notterman DA, Alon U, Sierk AJ, Levine AJ, (2001) Transcriptional Gene Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal Tissue Examined by Oligonucleotide Arrays. Cancer Res 61: 3124.
    • (2001) Cancer Res , vol.61 , pp. 3124
    • Notterman, D.A.1    Alon, U.2    Sierk, A.J.3    Levine, A.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.