메뉴 건너뛰기




Volumn 9, Issue 3, 2012, Pages

Temperature compensation and entrainment in circadian rhythms

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; ARTICLE; BIOLOGICAL MODEL; BODY TEMPERATURE; CIRCADIAN RHYTHM; HUMAN; TEMPERATURE;

EID: 84863614554     PISSN: 14783967     EISSN: 14783975     Source Type: Journal    
DOI: 10.1088/1478-3975/9/3/036011     Document Type: Article
Times cited : (16)

References (43)
  • 1
    • 0033593306 scopus 로고    scopus 로고
    • Molecular bases for circadian clocks
    • 10.1016/S0092-8674(00)80566-8 0092-8674
    • Dunlap J C 1999 Molecular bases for circadian clocks Cell 96 271-90
    • (1999) Cell , vol.96 , Issue.2 , pp. 271-290
    • Dunlap, J.C.1
  • 2
    • 0035179096 scopus 로고    scopus 로고
    • Molecular bases of circadian rhythms
    • 10.1146/annurev.cellbio.17.1.215 1081-0706
    • Harmer S L, Panda S and Kay S A 2001 Molecular bases of circadian rhythms Annu. Rev. Cell. Dev. Biol. 17 215-53
    • (2001) Annu. Rev. Cell. Dev. Biol. , vol.17 , Issue.1 , pp. 215-253
    • Harmer, S.L.1    Panda, S.2    Kay, S.A.3
  • 3
    • 33845611615 scopus 로고    scopus 로고
    • Interplay of circadian clocks and metabolic rhythms
    • 10.1146/annurev.genet.40.110405.090603 0066-4197
    • Wijnen H and Young M W 2006 Interplay of circadian clocks and metabolic rhythms Annu. Rev. Genet. 40 409-48
    • (2006) Annu. Rev. Genet. , vol.40 , Issue.1 , pp. 409-448
    • Wijnen, H.1    Young, M.W.2
  • 5
    • 48249116714 scopus 로고    scopus 로고
    • Systems biology of mammalian circadian clocks
    • 10.1101/sqb.2007.72.047 0091-7451
    • Ueda H R 2007 Systems biology of mammalian circadian clocks Cold Spring Harb. Symp. Quant. Biol. 72 365-80
    • (2007) Cold Spring Harb. Symp. Quant. Biol. , vol.72 , Issue.1 , pp. 365-380
    • Ueda, H.R.1
  • 6
    • 0000096719 scopus 로고
    • On the mechanism of temperature independence in a biological clock
    • 10.1073/pnas.43.9.804 0027-8424
    • Hastings J W and Sweeney B M 1957 On the mechanism of temperature independence in a biological clock Proc. Natl Acad. Sci. USA 43 804-11
    • (1957) Proc. Natl Acad. Sci. USA , vol.43 , Issue.9 , pp. 804-811
    • Hastings, J.W.1    Sweeney, B.M.2
  • 7
    • 0003044595 scopus 로고
    • Introducing temperature-compensation in any reaction kinetic oscillator model
    • 10.1080/09291019209360133 0022-1945
    • Ruoff P 1992 Introducing temperature-compensation in any reaction kinetic oscillator model J. Interdisiplinary Cycle Res. 23 92-9
    • (1992) J. Interdisiplinary Cycle Res. , vol.23 , Issue.2 , pp. 92-99
    • Ruoff, P.1
  • 8
    • 80052654131 scopus 로고    scopus 로고
    • Calculating activation energies for temperature compensation in circadian rhythms
    • 1478-3975 056007
    • Bodenstein C, Heiland I and Schuster S 2011 Calculating activation energies for temperature compensation in circadian rhythms Phys. Biol. 8 056007
    • (2011) Phys. Biol. , vol.8 , Issue.5
    • Bodenstein, C.1    Heiland, I.2    Schuster, S.3
  • 9
    • 0018577759 scopus 로고
    • The circadian locomotor activity rhythm of Hemideina thoracica (orthoptera): The effects of temperature perturbations
    • Gander P H 1979 The circadian locomotor activity rhythm of Hemideina thoracica (orthoptera): the effects of temperature perturbations Int. J. Chronobiol. 6 243-62
    • (1979) Int. J. Chronobiol. , vol.6 , pp. 243-262
    • Gander, P.H.1
  • 10
    • 70350028637 scopus 로고    scopus 로고
    • Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature
    • 10.1186/1741-7007-7-49 1741-7007
    • Currie J, Goda T and Wijnen H 2009 Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature BMC Biol. 7 49
    • (2009) BMC Biol. , vol.7 , Issue.1 , pp. 49
    • Currie, J.1    Goda, T.2    Wijnen, H.3
  • 11
    • 33748682959 scopus 로고    scopus 로고
    • Entrainment of Drosophila circadian rhythms by temperature cycles
    • 10.1111/j.1479-8425.2006.00227.x 1446-9235
    • Tomioka K and Yoshii T 2006 Entrainment of Drosophila circadian rhythms by temperature cycles Sleep Biol. Rhythms 4 240-7
    • (2006) Sleep Biol. Rhythms , vol.4 , Issue.3 , pp. 240-247
    • Tomioka, K.1    Yoshii, T.2
  • 12
    • 34147109889 scopus 로고    scopus 로고
    • A temperature-compensated model for circadian rhythms that can be entrained by temperature cycles
    • 10.1016/j.jtbi.2006.12.028 0022-5193
    • Takeuchi T, Hinohara T, Kurosawa G and Uchida K 2007 A temperature-compensated model for circadian rhythms that can be entrained by temperature cycles J. Theor. Biol. 246 195-204
    • (2007) J. Theor. Biol. , vol.246 , Issue.1 , pp. 195-204
    • Takeuchi, T.1    Hinohara, T.2    Kurosawa, G.3    Uchida, K.4
  • 13
    • 0032752042 scopus 로고    scopus 로고
    • Forty years of PRCs - What have we learned?
    • 10.3109/07420529909016940 0742-0528
    • Johnson C H 1999 Forty years of PRCs - what have we learned? Chronobiol. Int. 16 711-43
    • (1999) Chronobiol. Int. , vol.16 , Issue.6 , pp. 711-743
    • Johnson, C.H.1
  • 14
    • 30444453830 scopus 로고    scopus 로고
    • Uncovering the design principles of circadian clocks: Mathematical analysis of flexibility and evolutionary goals
    • 10.1016/j.jtbi.2005.06.026 0022-5193
    • Rand D A, Shulgin B V, Salazar J D and Millar A J 2006 Uncovering the design principles of circadian clocks: mathematical analysis of flexibility and evolutionary goals J. Theor. Biol. 238 616-35
    • (2006) J. Theor. Biol. , vol.238 , Issue.3 , pp. 616-635
    • Rand, D.A.1    Shulgin, B.V.2    Salazar, J.D.3    Millar, A.J.4
  • 15
    • 0013823048 scopus 로고
    • Oscillatory behavior in enzymatic control processes
    • 10.1016/0065-2571(65)90067-1 0065-2571
    • Goodwin B C 1965 Oscillatory behavior in enzymatic control processes Adv. Enzyme Regul. 3 425-38
    • (1965) Adv. Enzyme Regul. , vol.3 , pp. 425-438
    • Goodwin, B.C.1
  • 16
    • 0029991824 scopus 로고    scopus 로고
    • The temperature-compensated Goodwin model simulates many circadian clock properties
    • 10.1006/jtbi.1996.0067 0022-5193
    • Ruoff P and Rensing L 1996 The temperature-compensated Goodwin model simulates many circadian clock properties J. Theor. Biol. 179 275-85
    • (1996) J. Theor. Biol. , vol.179 , Issue.4 , pp. 275-285
    • Ruoff, P.1    Rensing, L.2
  • 17
    • 0033382101 scopus 로고    scopus 로고
    • The Goodwin oscillator: On the importance of degradation reactions in the circadian clock
    • 10.1177/074873099129001037 0748-7304
    • Ruoff P, Vinsjevik M, Monnerjahn C and Rensing L 1999 The Goodwin oscillator: on the importance of degradation reactions in the circadian clock J. Biol. Rhythms 14 469-79
    • (1999) J. Biol. Rhythms , vol.14 , Issue.6 , pp. 469-479
    • Ruoff, P.1    Vinsjevik, M.2    Monnerjahn, C.3    Rensing, L.4
  • 18
    • 27244462819 scopus 로고
    • The secant condition for instability in biochemical feedback control - I. The role of cooperativity and saturability
    • Thron C 1991 The secant condition for instability in biochemical feedback control - I. The role of cooperativity and saturability Bull. Math. Biol. 53 383-401
    • (1991) Bull. Math. Biol. , vol.53 , pp. 383-401
    • Thron, C.1
  • 19
    • 0002703577 scopus 로고
    • Existence of periodic solutions for negative feedback cellular control systems
    • 10.1016/0022-0396(77)90179-6 0022-0396
    • Hastings S, Tyson J and Webster D 1977 Existence of periodic solutions for negative feedback cellular control systems J. Differ. Eqns 25 39-64
    • (1977) J. Differ. Eqns , vol.25 , Issue.1 , pp. 39-64
    • Hastings, S.1    Tyson, J.2    Webster, D.3
  • 20
    • 0002275384 scopus 로고
    • The dynamics of feedback control circuits in biochemical pathways
    • Tyson J and Othmer H 1978 The dynamics of feedback control circuits in biochemical pathways Prog. Theor. Bio. 5 1-62
    • (1978) Prog. Theor. Bio. , vol.5 , pp. 1-62
    • Tyson, J.1    Othmer, H.2
  • 21
    • 48549097773 scopus 로고    scopus 로고
    • A minimal circadian clock model
    • 10.1142/9781860949920-0006
    • Axmann I M, Legewie S and Herzel H 2007 A minimal circadian clock model Genome Inform. 18 54-64
    • (2007) Genome Inform. , vol.18 , pp. 54-64
    • Axmann, I.M.1    Legewie, S.2    Herzel, H.3
  • 22
    • 0033375755 scopus 로고    scopus 로고
    • Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora
    • 10.1177/074873099129000948 0748-7304
    • Leloup J C, Gonze D and Goldbeter A 1999 Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora J. Biol. Rhythms 14 433-48
    • (1999) J. Biol. Rhythms , vol.14 , Issue.6 , pp. 433-448
    • Leloup, J.C.1    Gonze, D.2    Goldbeter, A.3
  • 23
    • 0030758944 scopus 로고    scopus 로고
    • Modeling temperature compensation in chemical and biological oscillators
    • 10.3109/07420529709001471 0742-0528
    • Ruoff P, Rensing L, Kommedal R and Mohsenzadeh S 1997 Modeling temperature compensation in chemical and biological oscillators Chronobiol. Int. 14 499-510
    • (1997) Chronobiol. Int. , vol.14 , Issue.5 , pp. 499-510
    • Ruoff, P.1    Rensing, L.2    Kommedal, R.3    Mohsenzadeh, S.4
  • 24
    • 0030804324 scopus 로고    scopus 로고
    • Temperature compensation of circadian rhythms: Control of the period in a model for circadian oscillations of the per protein in Drosophila
    • 10.3109/07420529709001472 0742-0528
    • Leloup J C and Goldbeter A 1997 Temperature compensation of circadian rhythms: control of the period in a model for circadian oscillations of the PER protein in Drosophila Chronobiol. Int. 14 511-20
    • (1997) Chronobiol. Int. , vol.14 , Issue.5 , pp. 511-520
    • Leloup, J.C.1    Goldbeter, A.2
  • 25
    • 14644414782 scopus 로고    scopus 로고
    • Temperature compensation in circadian clock models
    • 10.1016/j.jtbi.2004.10.012 0022-5193
    • Kurosawa G and Iwasa Y 2005 Temperature compensation in circadian clock models J. Theor. Biol. 233 453-68
    • (2005) J. Theor. Biol. , vol.233 , Issue.4 , pp. 453-468
    • Kurosawa, G.1    Iwasa, Y.2
  • 27
    • 0021502682 scopus 로고
    • Sensitivity analysis of oscillatory systems
    • 10.1016/0307-904X(84)90146-X 0307-904X
    • Kramer M A, Rabitz H and Calo J M 1984 Sensitivity analysis of oscillatory systems Appl. Math. Modelling 8 328-40
    • (1984) Appl. Math. Modelling , vol.8 , Issue.5 , pp. 328-340
    • Kramer, M.A.1    Rabitz, H.2    Calo, J.M.3
  • 28
    • 33748465152 scopus 로고    scopus 로고
    • Isochron-based phase response analysis of circadian rhythms
    • 10.1529/biophysj.105.078006 0006-3495
    • Gunawan R and Doyle F J 2006 Isochron-based phase response analysis of circadian rhythms Biophys. J. 91 2131-41
    • (2006) Biophys. J. , vol.91 , Issue.6 , pp. 2131-2141
    • Gunawan, R.1    Doyle, F.J.2
  • 29
    • 33846421760 scopus 로고
    • Multiple pulse interactions and averaging in systems of coupled neural oscillators
    • 10.1007/BF00160535 0303-6812
    • Ermentrout G B and Kopell N 1991 Multiple pulse interactions and averaging in systems of coupled neural oscillators J. Math. Biol. 29 195-217
    • (1991) J. Math. Biol. , vol.29 , Issue.3 , pp. 195-217
    • Ermentrout, G.B.1    Kopell, N.2
  • 30
    • 29144492754 scopus 로고    scopus 로고
    • The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock
    • 10.1073/pnas.0505137102 0027-8424
    • Ruoff P, Loros J J and Dunlap J C 2005 The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock Proc. Natl Acad. Sci. USA 102 17681-6
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , Issue.49 , pp. 17681-17686
    • Ruoff, P.1    Loros, J.J.2    Dunlap, J.C.3
  • 31
    • 0141527416 scopus 로고    scopus 로고
    • Temperature dependency and temperature compensation in a model of yeast glycolytic oscillations
    • 10.1016/S0301-4622(03)00191-1 0301-4622
    • Ruoff P, Christensen M K, Wolf J and Heinrich R 2003 Temperature dependency and temperature compensation in a model of yeast glycolytic oscillations Biophys. Chem. 106 179-92
    • (2003) Biophys. Chem. , vol.106 , Issue.2 , pp. 179-192
    • Ruoff, P.1    Christensen, M.K.2    Wolf, J.3    Heinrich, R.4
  • 32
    • 84874205661 scopus 로고    scopus 로고
    • http://www.ebi.ac.uk/biomodels-main/
  • 35
    • 0031099173 scopus 로고    scopus 로고
    • Control analysis of periodic phenomena in biological systems
    • 10.1021/jp962336u 1520-6106 B
    • Kholodenko B, Demin O and Westerhoff H 1997 Control analysis of periodic phenomena in biological systems J. Phys. Chem. B 101 2070-81
    • (1997) J. Phys. Chem. , vol.101 , Issue.11 , pp. 2070-2081
    • Kholodenko, B.1    Demin, O.2    Westerhoff, H.3
  • 36
    • 70349628447 scopus 로고    scopus 로고
    • How to achieve fast entrainment? the timescale to synchronization
    • 10.1371/journal.pone.0007057 1932-6203
    • Granada A E and Herzel H 2009 How to achieve fast entrainment? The timescale to synchronization PLoS One 4 e7057
    • (2009) PLoS One , vol.4 , Issue.9
    • Granada, A.E.1    Herzel, H.2
  • 37
    • 0042566193 scopus 로고    scopus 로고
    • Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fibroblasts
    • 10.1046/j.1365-2443.2003.00669.x 1356-9597
    • Tsuchiya Y, Akashi M and Nishida E 2003 Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fibroblasts Genes Cells 8 713-20
    • (2003) Genes Cells , vol.8 , Issue.8 , pp. 713-720
    • Tsuchiya, Y.1    Akashi, M.2    Nishida, E.3
  • 38
    • 78149431714 scopus 로고    scopus 로고
    • The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts
    • 10.1371/journal.pone.0013376 1932-6203
    • Pagani L et al 2010 The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts PLoS One 5 13376
    • (2010) PLoS One , vol.5 , Issue.10
    • Pagani, L.1
  • 39
    • 0034288615 scopus 로고    scopus 로고
    • Entrainment versus chaos in a model for a circadian oscillator driven by light-dark cycles
    • 10.1023/A:1026410121183 0022-4715
    • Gonze D and Goldbeter A 2000 Entrainment versus chaos in a model for a circadian oscillator driven by light-dark cycles J. Stat. Phys. 101 649-63
    • (2000) J. Stat. Phys. , vol.101 , Issue.1-2 , pp. 649-663
    • Gonze, D.1    Goldbeter, A.2
  • 40
    • 0036675864 scopus 로고    scopus 로고
    • Twilights widen the range of photic entrainment in hamsters
    • 10.1177/074873002129002654 0748-7304
    • Boulos Z, Macchi M M and Terman M 2002 Twilights widen the range of photic entrainment in hamsters J. Biol. Rhythms 17 353-63
    • (2002) J. Biol. Rhythms , vol.17 , Issue.4 , pp. 353-363
    • Boulos, Z.1    MacChi, M.M.2    Terman, M.3
  • 41
    • 77957960061 scopus 로고    scopus 로고
    • Temperature as a universal resetting cue for mammalian circadian oscillators
    • 10.1126/science.1195262 0036-8075
    • Buhr E D, Yoo S and Takahashi J S 2010 Temperature as a universal resetting cue for mammalian circadian oscillators Science 330 379-85
    • (2010) Science , vol.330 , Issue.6002 , pp. 379-385
    • Buhr, E.D.1    Yoo, S.2    Takahashi, J.S.3
  • 42
    • 77957943014 scopus 로고    scopus 로고
    • Circadian rhythms. Temperatures to communicate by
    • 10.1126/science.1197747 0036-8075
    • Edery I 2010 Circadian rhythms. Temperatures to communicate by Science 330 329-30
    • (2010) Science , vol.330 , Issue.6002 , pp. 329-330
    • Edery, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.