메뉴 건너뛰기




Volumn 109, Issue 27, 2012, Pages 10802-10805

Evidence for a spontaneous gapped state in ultraclean bilayer graphene

Author keywords

Anomalous hall; Electron electron interactions; Layer antiferromagnets; Spontaneous quantum hall states; Topological states

Indexed keywords

BILAYER GRAPHENE; GRAPHENE; UNCLASSIFIED DRUG;

EID: 84863579081     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1205978109     Document Type: Article
Times cited : (132)

References (44)
  • 2
    • 33750162077 scopus 로고    scopus 로고
    • Asymmetry gap in the electronic band structure of bilayer graphene
    • McCann E (2006) Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B 74:161403.
    • (2006) Phys Rev B , vol.74 , pp. 161403
    • McCann, E.1
  • 4
    • 34247522914 scopus 로고    scopus 로고
    • Ab initio theory of gate induced gaps in graphene bilayers
    • Min HK, Sahu B, Banerjee SK, MacDonald AH (2007) Ab initio theory of gate induced gaps in graphene bilayers. Phys Rev B 75:155115.
    • (2007) Phys Rev B , vol.75 , pp. 155115
    • Min, H.K.1    Sahu, B.2    Banerjee, S.K.3    MacDonald, A.H.4
  • 5
    • 77957701366 scopus 로고    scopus 로고
    • Quantum anomalous Hall state in bilayer graphene
    • Nandkishore R, Levitov L (2010) Quantum anomalous Hall state in bilayer graphene. Phys Rev B 82:115124.
    • (2010) Phys Rev B , vol.82 , pp. 115124
    • Nandkishore, R.1    Levitov, L.2
  • 6
    • 79960624487 scopus 로고    scopus 로고
    • Spontaneous quantum Hall states in chirally stacked few-layer graphene systems
    • Zhang F, Jung J, Fiete GA, Niu QA, MacDonald AH (2011) Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys Rev Lett 106:156801.
    • (2011) Phys Rev Lett , vol.106 , pp. 156801
    • Zhang, F.1    Jung, J.2    Fiete, G.A.3    Niu, Q.A.4    MacDonald, A.H.5
  • 7
    • 79960651087 scopus 로고    scopus 로고
    • Lattice theory of pseudospin ferromagnetism in bilayer graphene: Competing interaction-induced quantum Hall states
    • Jung J, Zhang JF, MacDonald AH (2011) Lattice theory of pseudospin ferromagnetism in bilayer graphene: Competing interaction-induced quantum Hall states. Phys Rev B 83:115408.
    • (2011) Phys Rev B , vol.83 , pp. 115408
    • Jung, J.1    Zhang, J.F.2    MacDonald, A.H.3
  • 8
    • 77954827092 scopus 로고    scopus 로고
    • Spontaneous inversion symmetry breaking in graphene bilayers
    • Zhang F, Min H, Polini M, MacDonald AH (2010) Spontaneous inversion symmetry breaking in graphene bilayers. Phys Rev B 81:041402.
    • (2010) Phys Rev B , vol.81 , pp. 041402
    • Zhang, F.1    Min, H.2    Polini, M.3    MacDonald, A.H.4
  • 9
    • 77954825946 scopus 로고    scopus 로고
    • Many-body instability of Coulomb interacting bilayer graphene: Renormalization group approach
    • Vafek O, Yang K (2010) Many-body instability of Coulomb interacting bilayer graphene:Renormalization group approach. Phys Rev B 81:041401.
    • (2010) Phys Rev B , vol.81 , pp. 041401
    • Vafek, O.1    Yang, K.2
  • 10
    • 78649759118 scopus 로고    scopus 로고
    • Spontaneous symmetry breaking and Lifshitz transition in bilayer graphene
    • Lemonik Y, Aleiner IL, Toke C, Fal'ko VI (2010) Spontaneous symmetry breaking and Lifshitz transition in bilayer graphene. Phys Rev B 82:201408.
    • (2010) Phys Rev B , vol.82 , pp. 201408
    • Lemonik, Y.1    Aleiner, I.L.2    Toke, C.3    Fal'ko, V.I.4
  • 12
    • 76249131021 scopus 로고    scopus 로고
    • Symmetry breaking in the zero-energy Landau level in bilayer graphene
    • Zhao Y, Cadden-Zimansky P, Jiang Z, Kim P (2010) Symmetry breaking in the zero-energy Landau level in bilayer graphene. Phys Rev Lett 104:066801.
    • (2010) Phys Rev Lett , vol.104 , pp. 066801
    • Zhao, Y.1    Cadden-Zimansky, P.2    Jiang, Z.3    Kim, P.4
  • 13
    • 71449108628 scopus 로고    scopus 로고
    • Broken-symmetry states and divergent resistance in suspended bilayer graphene
    • Feldman BE, Martin J, Yacoby A (2009) Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nat Phys 5:889-893.
    • (2009) Nat Phys , vol.5 , pp. 889-893
    • Feldman, B.E.1    Martin, J.2    Yacoby, A.3
  • 14
    • 78649732372 scopus 로고    scopus 로고
    • Interacting fermions on the honeycomb bilayer: From weak to strong coupling
    • Vafek O (2010) Interacting fermions on the honeycomb bilayer: From weak to strong coupling. Phys Rev B 82:205106.
    • (2010) Phys Rev B , vol.82 , pp. 205106
    • Vafek, O.1
  • 15
  • 16
    • 84860289211 scopus 로고    scopus 로고
    • Phase diagram for the ν = 0 quantum Hall state in monolayer graphene Maxim Kharitonov
    • Kharitonov M (2012) Phase diagram for the ν = 0 quantum Hall state in monolayer graphene Maxim Kharitonov. Phys Rev B, 85 p:155439.
    • (2012) Phys Rev B , vol.85 , pp. 155439
    • Kharitonov, M.1
  • 18
    • 84860605334 scopus 로고    scopus 로고
    • Distinguishing spontaneous quantum Hall states in bilayer graphene
    • Zhang F, MacDonald AH (2012) Distinguishing spontaneous quantum Hall states in bilayer graphene. Phys Rev Lett, 108 p:186804.
    • (2012) Phys Rev Lett , vol.108 , pp. 186804
    • Zhang, F.1    MacDonald, A.H.2
  • 19
    • 78149360433 scopus 로고    scopus 로고
    • Broken-symmetry states and divergent resistance in suspended bilayer graphene
    • Weitz RT, Allen MT, Feldman BE, Martin J, Yacoby A (2011) Broken-symmetry states and divergent resistance in suspended bilayer graphene. Science 330:812-816.
    • (2011) Science , vol.330 , pp. 812-816
    • Weitz, R.T.1    Allen, M.T.2    Feldman, B.E.3    Martin, J.4    Yacoby, A.5
  • 20
    • 78650257931 scopus 로고    scopus 로고
    • Local compressibility measurements of correlated states in suspended bilayer graphene
    • Martin J, Feldman BE, Weitz RT, Allen MT, Yacoby A (2010) Local compressibility measurements of correlated states in suspended bilayer graphene. Phys Rev Lett 105:256806.
    • (2010) Phys Rev Lett , vol.105 , pp. 256806
    • Martin, J.1    Feldman, B.E.2    Weitz, R.T.3    Allen, M.T.4    Yacoby, A.5
  • 21
    • 84856833176 scopus 로고    scopus 로고
    • Spontaneously gapped ground state in suspended bilayer graphene
    • Freitag F, Trbovic J, Weiss M, Schonenberger C (2012) Spontaneously gapped ground state in suspended bilayer graphene. Phys Rev Lett 108:076602.
    • (2012) Phys Rev Lett , vol.108 , pp. 076602
    • Freitag, F.1    Trbovic, J.2    Weiss, M.3    Schonenberger, C.4
  • 22
    • 84862829800 scopus 로고    scopus 로고
    • Transport spectroscopy of symmetry-broken insulating states in bilayer graphene
    • Velasco J, et al. (2012) Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat Nanotechnol 7:156-160.
    • (2012) Nat Nanotechnol , vol.7 , pp. 156-160
    • Velasco, J.1
  • 23
    • 80051603735 scopus 로고    scopus 로고
    • Interaction-driven spectrum reconstruction in bilayer graphene
    • Mayorov AS, et al. (2011) Interaction-driven spectrum reconstruction in bilayer graphene. Science 333:860-863.
    • (2011) Science , vol.333 , pp. 860-863
    • Mayorov, A.S.1
  • 27
    • 33744920071 scopus 로고    scopus 로고
    • Transport in bilayer graphene: Calculations within a self-consistent Born approximation
    • Koshino M, Ando T (2006) Transport in bilayer graphene: Calculations within a self-consistent Born approximation. Phys Rev B 73:245403.
    • (2006) Phys Rev B , vol.73 , pp. 245403
    • Koshino, M.1    Ando, T.2
  • 28
    • 33746622996 scopus 로고    scopus 로고
    • Minimal conductivity in bilayer graphene
    • Katsnelson MI (2006) Minimal conductivity in bilayer graphene. Eur Phys J B 52:151-153.
    • (2006) Eur Phys J B , vol.52 , pp. 151-153
    • Katsnelson, M.I.1
  • 29
    • 33846386851 scopus 로고    scopus 로고
    • Minimal longitudinal dc conductivity of perfect bilayer graphene
    • Cserti J (2007) Minimal longitudinal dc conductivity of perfect bilayer graphene. Phys Rev B 75:033405.
    • (2007) Phys Rev B , vol.75 , pp. 033405
    • Cserti, J.1
  • 30
    • 84856523558 scopus 로고    scopus 로고
    • Effect of the band structure topology on the minimal conductivity for bilayer graphene with symmetry breaking
    • David G, Rakya P, Oroszlany L, Cserti J (2012) Effect of the band structure topology on the minimal conductivity for bilayer graphene with symmetry breaking. Phys Rev B, 85 p:041402.
    • (2012) Phys Rev B , vol.85 , pp. 041402
    • David, G.1    Rakya, P.2    Oroszlany, L.3    Cserti, J.4
  • 33
    • 78149232354 scopus 로고    scopus 로고
    • Finite conductivity minimum in bilayer graphene without charge inhomogeneities
    • Trushin M, Kailasvuori J, Schliemann J, MacDonald AH (2010) Finite conductivity minimum in bilayer graphene without charge inhomogeneities. Phys Rev B 82:155308.
    • (2010) Phys Rev B , vol.82 , pp. 155308
    • Trushin, M.1    Kailasvuori, J.2    Schliemann, J.3    MacDonald, A.H.4
  • 34
    • 37249020423 scopus 로고    scopus 로고
    • Measurement of scattering rate and minimum conductivity in graphene
    • Tan YW, et al. (2007) Measurement of scattering rate and minimum conductivity in graphene. Phys Rev Lett 99:246803.
    • (2007) Phys Rev Lett , vol.99 , pp. 246803
    • Tan, Y.W.1
  • 37
    • 77954737391 scopus 로고    scopus 로고
    • Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene
    • Zhu WJ, Perebeinos V, Freitag M, Avouris P (2009) Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys Rev B 80:235402.
    • (2009) Phys Rev B , vol.80 , pp. 235402
    • Zhu, W.J.1    Perebeinos, V.2    Freitag, M.3    Avouris, P.4
  • 38
    • 84907804592 scopus 로고    scopus 로고
    • Stacking-dependent band gap and quantum transport in trilayer graphene
    • Bao W, et al. (2011) Stacking-dependent band gap and quantum transport in trilayer graphene. Nat Phys 7:948-952.
    • (2011) Nat Phys , vol.7 , pp. 948-952
    • Bao, W.1
  • 39
    • 80053513820 scopus 로고    scopus 로고
    • Inhomogenous electronic structure, transport gap, and percolation threshold in disordered bilayer graphene
    • Rossi E, Das Sarma S (2011) Inhomogenous electronic structure, transport gap, and percolation threshold in disordered bilayer graphene. Phys Rev Lett 107:155502.
    • (2011) Phys Rev Lett , vol.107 , pp. 155502
    • Rossi, E.1    Das Sarma, S.2
  • 41
    • 77956658452 scopus 로고    scopus 로고
    • Band structure of ABC-stacked graphene trilayers
    • Zhang F, Sahu B, Min HK, MacDonald AH (2010) Band structure of ABC-stacked graphene trilayers. Phys Rev B 82:035409.
    • (2010) Phys Rev B , vol.82 , pp. 035409
    • Zhang, F.1    Sahu, B.2    Min, H.K.3    MacDonald, A.H.4
  • 42
    • 77949295097 scopus 로고    scopus 로고
    • Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices
    • Bao WZ, et al. (2010) Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices. Nano Res 3:98-102.
    • (2010) Nano Res , vol.3 , pp. 98-102
    • Bao, W.Z.1
  • 43
    • 44349166859 scopus 로고    scopus 로고
    • Fabrication of graphene p-n-p junctions with contactless top gates
    • Liu G, Velasco J, Bao WZ, Lau CN (2008) Fabrication of graphene p-n-p junctions with contactless top gates. Appl Phys Lett 92:203103.
    • (2008) Appl Phys Lett , vol.92 , pp. 203103
    • Liu, G.1    Velasco, J.2    Bao, W.Z.3    Lau, C.N.4
  • 44
    • 84860243264 scopus 로고    scopus 로고
    • Hund's rules for the N = 0 Landau levels of trilayer graphene
    • Zhang F, Tilahun D, MacDonald AH (2012) Hund's rules for the N = 0 Landau levels of trilayer graphene. Phys Rev B 85:165139.
    • (2012) Phys Rev B , vol.85 , pp. 165139
    • Zhang, F.1    Tilahun, D.2    MacDonald, A.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.