-
1
-
-
34548691246
-
A generalized maximum entropy approach to Bregman Co-clustering and matrix approximation
-
A. Banerjee, I. Dhillon, J. Ghosh, S.Merugu, and D.S. Modha. A generalized maximum entropy approach to bregman co-clustering and matrix approximation. JMLR, 8:1919-1986, 2007. (Pubitemid 47416225)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1919-1986
-
-
Banerjee, A.1
Dhillon, I.2
Ghosh, J.3
Merugu, S.4
Modha, D.S.5
-
2
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 7:2399-2434, 2006. (Pubitemid 44708005)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
5
-
-
0035789644
-
Co-clustering documents and words using bipartite spectral graph partitioning
-
I. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In KDD, 2001.
-
(2001)
KDD
-
-
Dhillon, I.1
-
6
-
-
33749255098
-
On the equivalence of nonnegative matrix factorization and spectral clustering
-
C. Ding, X. He, and H.D. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. In SDM, 2005.
-
(2005)
SDM
-
-
Ding, C.1
He, X.2
Simon, H.D.3
-
7
-
-
33749575326
-
Orthogonal nonnegative matrix tri-factorizations for clustering
-
C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix tri-factorizations for clustering. In KDD, 2006.
-
(2006)
KDD
-
-
Ding, C.1
Li, T.2
Peng, W.3
Park, H.4
-
8
-
-
57349122015
-
Learning from labeled features using generalized expectation criteria
-
G. Druck, G. Mann, and A. McCallum. Learning from labeled features using generalized expectation criteria. In SIGIR, 2008.
-
(2008)
SIGIR
-
-
Druck, G.1
Mann, G.2
McCallum, A.3
-
11
-
-
33645620066
-
Semi-supervised learning from unbalanced labeled data an improvement
-
T.M. Huang and V. Kecman. Semi-supervised learning from unbalanced labeled data an improvement. Lecture Notes in Computer Science, 3215:765-771, 2004.
-
(2004)
Lecture Notes in Computer Science
, vol.3215
, pp. 765-771
-
-
Huang, T.M.1
Kecman, V.2
-
12
-
-
37149010281
-
Initializations for the non-negative matrix factorization
-
A. Langville, C. Meyer, and R. Albright. Initializations for the non-negative matrix factorization. In KDD, 2006.
-
(2006)
KDD
-
-
Langville, A.1
Meyer, C.2
Albright, R.3
-
13
-
-
49849097634
-
The relationships among various nonnegative matrix factorization methods for clustering
-
T. Li and C. Ding. The relationships among various nonnegative matrix factorization methods for clustering. In ICDM, 2006.
-
(2006)
ICDM
-
-
Li, T.1
Ding, C.2
-
14
-
-
67049165491
-
Document- word co-regularization for semi-supervised sentiment analysis
-
V. Sindhwani and P.Melville. Document-word co-regularization for semi-supervised sentiment analysis. In ICDM, 2008.
-
(2008)
ICDM
-
-
Sindhwani, V.1
Melville, P.2
-
15
-
-
0002096830
-
Document clustering using word clusters via the information bottleneck method
-
N. Slonim and N. Tishby. Document clustering using word clusters via the information bottleneck method. In SIGIR, 2000.
-
(2000)
SIGIR
-
-
Slonim, N.1
Tishby, N.2
|