-
1
-
-
49149106980
-
-
PHTRDP 0141-1594 10.1080/01411590801992463
-
G. Catalan, Phase Transit. PHTRDP 0141-1594 10.1080/01411590801992463 81, 729 (2008).
-
(2008)
Phase Transit.
, vol.81
, pp. 729
-
-
Catalan, G.1
-
2
-
-
79960638706
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.106.246403
-
R. Scherwitzl, S. Gariglio, M. Gabay, P. Zubko, M. Gibert, and J. M. Triscone, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.106.246403 106, 246403 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 246403
-
-
Scherwitzl, R.1
Gariglio, S.2
Gabay, M.3
Zubko, P.4
Gibert, M.5
Triscone, J.M.6
-
3
-
-
79956295225
-
-
SCIEAS 0036-8075 10.1126/science.1202647
-
A. V. Boris, Y. Matiks, E. Benckiser, A. Frano, P. Popovich, V. Hinkov, P. Wochner, M. Castro-Colin, E. Detemple, V. K. Malik, C. Bernhard, T. Prokscha, A. Suter, Z. Salman, E. Morenzoni, G. Cristiani, H.-U. Habermeier, and B. Keimer, Science SCIEAS 0036-8075 10.1126/science.1202647 332, 937 (2011).
-
(2011)
Science
, vol.332
, pp. 937
-
-
Boris, A.V.1
Matiks, Y.2
Benckiser, E.3
Frano, A.4
Popovich, P.5
Hinkov, V.6
Wochner, P.7
Castro-Colin, M.8
Detemple, E.9
Malik, V.K.10
Bernhard, C.11
Prokscha, T.12
Suter, A.13
Salman, Z.14
Morenzoni, E.15
Cristiani, G.16
Habermeier, H.-U.17
Keimer, B.18
-
4
-
-
84857370243
-
-
1476-1122 10.1038/nmat3224
-
M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J. M. Triscone, Nat. Mater. 1476-1122 10.1038/nmat3224 11, 195 (2012).
-
(2012)
Nat. Mater.
, vol.11
, pp. 195
-
-
Gibert, M.1
Zubko, P.2
Scherwitzl, R.3
Íñiguez, J.4
Triscone, J.M.5
-
5
-
-
34247571513
-
Charge ordering as alternative to Jahn-Teller distortion
-
DOI 10.1103/PhysRevLett.98.176406
-
I. I. Mazin, D. I. Khomskii, R. Lengsdorf, J. A. Alonso, W. G. Marshall, R. M. Ibberson, A. Podlesnyak, M. J. Martínez-Lope, and M. M. Abd-Elmeguid, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.176406 98, 176406 (2007). (Pubitemid 46676956)
-
(2007)
Physical Review Letters
, vol.98
, Issue.17
, pp. 176406
-
-
Mazin, I.I.1
Khomskii, D.I.2
Lengsdorf, R.3
Alonso, J.A.4
Marshall, W.G.5
Ibberson, R.M.6
Podlesnyak, A.7
Martinez-Lope, M.J.8
Abd-Elmeguid, M.M.9
-
6
-
-
78651303926
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.106.016405
-
S. B. Lee, R. Chen, and L. Balents, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.106.016405 106, 016405 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 016405
-
-
Lee, S.B.1
Chen, R.2
Balents, L.3
-
8
-
-
2442537377
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.54.11169
-
G. Kresse and J. Furthmüller, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.54.11169 54, 11169 (1996);
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11169
-
-
Kresse, G.1
Furthmüller, J.2
-
9
-
-
0011236321
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.59.1758
-
G. Kresse and D. Joubert, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.59.1758 59, 1758 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758
-
-
Kresse, G.1
Joubert, D.2
-
10
-
-
25744460922
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.50.17953
-
P. E. Blöchl, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.50. 17953 50, 17953 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953
-
-
Blöchl, P.E.1
-
11
-
-
43749120253
-
VESTA: A three-dimensional visualization system for electronic and structural analysis
-
DOI 10.1107/S0021889808012016, PII S0021889808012016
-
K. Momma and F. Izumi, J. Appl. Crystallogr. JACGAR 0021-8898 10.1107/S0021889808012016 41, 653 (2008). (Pubitemid 351693898)
-
(2008)
Journal of Applied Crystallography
, vol.41
, Issue.3
, pp. 653-658
-
-
Momma, K.1
Izumi, F.2
-
12
-
-
0001486791
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.57.1505
-
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.57.1505 57, 1505 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 1505
-
-
Dudarev, S.L.1
Botton, G.A.2
Savrasov, S.Y.3
Humphreys, C.J.4
Sutton, A.P.5
-
13
-
-
70349868443
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.103.156401
-
G. Giovannetti, S. Kumar, D. Khomskii, S. Picozzi, and J. van den Brink, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.103.156401 103, 156401 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 156401
-
-
Giovannetti, G.1
Kumar, S.2
Khomskii, D.3
Picozzi, S.4
Van Den Brink, J.5
-
14
-
-
0000936550
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.61.1756
-
J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, J. L. García-Muñoz, and M. T. Fernández-Díaz, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.61.1756 61, 1756 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 1756
-
-
Alonso, J.A.1
Martínez-Lope, M.J.2
Casais, M.T.3
García- Muñoz, J.L.4
Fernández-Díaz, M.T.5
-
15
-
-
66249098101
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.79.134432
-
J. L. García-Muñoz, M. A. G. Aranda, J. A. Alonso, and M. J. Martínez-Lope, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.79.134432 79, 134432 (2009).
-
(2009)
Phys. Rev. B
, vol.79
, pp. 134432
-
-
García-Muñoz, J.L.1
Aranda, M.A.G.2
Alonso, J.A.3
Martínez-Lope, M.J.4
-
16
-
-
84863304825
-
-
We also found that a rather different solution, metallic and with a large net magnetization, is the predicted ground state of bulk NNO when using U values above 3 eV. Thus, for our chosen value of U = 7 eV, the calculations actually predict a ground state that is in clear disagreement with the experimental observations, and we should deem the present work as restricted to spin configurations that resemble the experimentally observed phases, which have essentially zero remnant magnetization.
-
We also found that a rather different solution, metallic and with a large net magnetization, is the predicted ground state of bulk NNO when using U values above 3 eV. Thus, for our chosen value of U = 7 eV, the calculations actually predict a ground state that is in clear disagreement with the experimental observations, and we should deem the present work as restricted to spin configurations that resemble the experimentally observed phases, which have essentially zero remnant magnetization.
-
-
-
-
17
-
-
84863301224
-
-
The breathing mode corresponds to the R point of the Brillouin zone of the ideal five-atom perovskite cell, while the JT distortion is associated to the M point.
-
The breathing mode corresponds to the R point of the Brillouin zone of the ideal five-atom perovskite cell, while the JT distortion is associated to the M point.
-
-
-
-
18
-
-
0001061550
-
-
3 compounds with large rare-earth species (R = Pr, Nd, etc.) were initially thought to present only one type of Ni cation in their ground state PRBMDO 1098-0121 10.1103/PhysRevB.46.4414
-
3 are consistent with the splitting in two Ni sublattices that we found in our simulations. The situation of the compound with Nd thus seems similar to what is known for the materials with small rare earths (R = Lu, Y, or Ho).
-
(1992)
Phys. Rev. B
, vol.46
, pp. 4414
-
-
García-Muñoz, J.L.1
Rodríguez-Carvajal, J.2
Lacorre, P.3
Torrance, J.B.4
-
19
-
-
0001088066
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.82.3871
-
J. A. Alonso, J. L. García-Muñoz, M. T. Fernández- Díaz, M. A. G. Aranda, M. J. Martínez-Lope, and M. T. Casais, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.82.3871 82, 3871 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 3871
-
-
Alonso, J.A.1
García-Muñoz, J.L.2
Fernández-Díaz, M.T.3
Aranda, M.A.G.4
Martínez-Lope, M.J.5
Casais, M.T.6
-
20
-
-
0035477132
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.64.144417
-
M. T. Fernández-Díaz, J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, and J. L. García-Muñoz, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.64.144417 64, 144417 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 144417
-
-
Fernández-Díaz, M.T.1
Alonso, J.A.2
Martínez-Lope, M.J.3
Casais, M.T.4
García-Muñoz, J.L.5
-
21
-
-
73849117658
-
-
CHREAY 0009-2665 10.1021/cr900053k
-
I. D. Brown, Chem. Rev. CHREAY 0009-2665 10.1021/cr900053k 109, 6858 (2009).
-
(2009)
Chem. Rev.
, vol.109
, pp. 6858
-
-
Brown, I.D.1
-
22
-
-
84863326098
-
-
The scheme employed to estimate atomic charges tends to render values that are too small, as evidenced by the fact that the sum of the electronic charges assigned to all the atoms does not reach the total number of electrons. Further, the hybridization between Ni and O orbitals is clearly very large in these nickelates. As a result of these two factors, the estimated ionization states deviate significantly from the nominal ones that would correspond to the ionic limit. Thus, here we only report charge differences, which are of greater physical significance than the values obtained for individual atomic charges.
-
The scheme employed to estimate atomic charges tends to render values that are too small, as evidenced by the fact that the sum of the electronic charges assigned to all the atoms does not reach the total number of electrons. Further, the hybridization between Ni and O orbitals is clearly very large in these nickelates. As a result of these two factors, the estimated ionization states deviate significantly from the nominal ones that would correspond to the ionic limit. Thus, here we only report charge differences, which are of greater physical significance than the values obtained for individual atomic charges.
-
-
-
-
23
-
-
84863311127
-
-
2 does not imply that all Ni atoms are crystallographically equivalent. In fact, for all Ni's to be equivalent, we would need to have a perfect Pnma symmetry, which we never observed.
-
2 does not imply that all Ni atoms are crystallographically equivalent. In fact, for all Ni's to be equivalent, we would need to have a perfect P n m a symmetry, which we never observed.
-
-
-
-
24
-
-
84863303764
-
-
To determine the symmetry of our relaxed structures, we used the program findsym
-
To determine the symmetry of our relaxed structures, we used the program findsym [H. T. Stokes and D. M. Hatch (2004), http://stokes.byu.edu/isotropy. html] employing a value of 0.01 Å for the accuracy within which atomic positions and lattice vectors are known.
-
(2004)
-
-
Stokes, H.T.1
Hatch, D.M.2
-
25
-
-
84863334721
-
-
For bulk NNO and U = 7 eV, we obtain a pseudocubic in-plane lattice constant of about 3.87 Å. Experimentally, the pseudocubic in-plane lattice constant of NNO is about 5.38/√2 Å = 3.80 Å, as derived from the results of Ref. at 50 K.
-
For bulk NNO and U = 7 eV, we obtain a pseudocubic in-plane lattice constant of about 3.87 Å. Experimentally, the pseudocubic in-plane lattice constant of NNO is about 5.38/ √ 2 Å = 3.80 Å, as derived from the results of Ref. at 50 K.
-
-
-
-
26
-
-
66349090745
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.102.217603
-
H. Bea, B. Dupe, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, and A. Barthelemy, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.102.217603 102, 217603 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 217603
-
-
Bea, H.1
Dupe, B.2
Fusil, S.3
Mattana, R.4
Jacquet, E.5
Warot-Fonrose, B.6
Wilhelm, F.7
Rogalev, A.8
Petit, S.9
Cros, V.10
Anane, A.11
Petroff, F.12
Bouzehouane, K.13
Geneste, G.14
Dkhil, B.15
Lisenkov, S.16
Ponomareva, I.17
Bellaiche, L.18
Bibes, M.19
Barthelemy, A.20
more..
-
27
-
-
77956509068
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.82.014110
-
S. J. May, J. W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A. Bhattacharya, and P. J. Ryan, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.82.014110 82, 014110 (2010).
-
(2010)
Phys. Rev. B
, vol.82
, pp. 014110
-
-
May, S.J.1
Kim, J.W.2
Rondinelli, J.M.3
Karapetrova, E.4
Spaldin, N.A.5
Bhattacharya, A.6
Ryan, P.J.7
-
28
-
-
78649758517
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.82.195402
-
A. J. Hatt and N. A. Spaldin, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.82.195402 82, 195402 (2010).
-
(2010)
Phys. Rev. B
, vol.82
, pp. 195402
-
-
Hatt, A.J.1
Spaldin, N.A.2
-
29
-
-
84861426369
-
-
ACACBN 0567-7394 10.1107/S0567739475001635
-
A. M. Glazer, Acta Crystallogr. Sect. A ACACBN 0567-7394 10.1107/S0567739475001635 31, 756 (1975).
-
(1975)
Acta Crystallogr. Sect. A
, vol.31
, pp. 756
-
-
Glazer, A.M.1
-
30
-
-
0034664625
-
3 thin films
-
DOI 10.1103/PhysRevB.62.7892
-
G. Catalan, R. M. Bowman, and J. M. Gregg, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.62.7892 62, 7892 (2000). (Pubitemid 32366540)
-
(2000)
Physical Review B - Condensed Matter and Materials Physics
, vol.62
, Issue.12
, pp. 7892-7900
-
-
Catalan, G.1
Bowman, R.M.2
Gregg, J.M.3
-
31
-
-
77953519140
-
-
APPLAB 0003-6951 10.1063/1.3451462
-
J. Liu, M. Kareev, B. Gray, J. W. Kim, P. Ryan, B. Dabrowski, J. W. Freeland, and J. Chakhalian, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.3451462 96, 233110 (2010).
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 233110
-
-
Liu, J.1
Kareev, M.2
Gray, B.3
Kim, J.W.4
Ryan, P.5
Dabrowski, B.6
Freeland, J.W.7
Chakhalian, J.8
-
32
-
-
78650392857
-
-
ADVMEW 0935-9648 10.1002/adma.201003241
-
R. Scherwitzl, P. Zubko, I. G. Lezama, S. Ono, A. F. Morpurgo, G. Catalan, and J. M. Triscone, Adv. Mater. ADVMEW 0935-9648 10.1002/adma.201003241 22, 5517 (2010).
-
(2010)
Adv. Mater.
, vol.22
, pp. 5517
-
-
Scherwitzl, R.1
Zubko, P.2
Lezama, I.G.3
Ono, S.4
Morpurgo, A.F.5
Catalan, G.6
Triscone, J.M.7
-
33
-
-
80455177259
-
-
This would correspond to the strong-coupling limit discussed in, PRBMDO 1098-0121 10.1103/PhysRevB.84.165119
-
This would correspond to the strong-coupling limit discussed in S. B. Lee, R. Chen, and L. Balents, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.84. 165119 84, 165119 (2011).
-
(2011)
Phys. Rev. B
, vol.84
, pp. 165119
-
-
Lee, S.B.1
Chen, R.2
Balents, L.3
-
34
-
-
84863318276
-
-
3 as relying on a type of Fermi-nesting mechanism that is usually associated with weak correlations
-
3 as relying on a type of Fermi-nesting mechanism that is usually associated with weak correlations.
-
-
-
Mazin1
Lee2
|