메뉴 건너뛰기




Volumn 13, Issue 2, 2012, Pages 217-227

Sample size determination for classifiers based on single-nucleotide polymorphisms

Author keywords

HapMap data; Sample size determination; SNP classification

Indexed keywords

ALGORITHM; ARTICLE; ASIAN; BIOSTATISTICS; CLASSIFICATION; GENETICS; HAPLOTYPE MAP; HUMAN; MONTE CARLO METHOD; POPULATION GENETICS; PROBABILITY; SAMPLE SIZE; SINGLE NUCLEOTIDE POLYMORPHISM; STATISTICAL MODEL; STATISTICS; VALIDATION STUDY;

EID: 84863269158     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxr053     Document Type: Article
Times cited : (5)

References (18)
  • 2
    • 70149093984 scopus 로고    scopus 로고
    • A simulation-approximation approach to sample size planning for high-dimensional classification studies
    • DE VALPINE, P., BITTER, H. M., BROWN, M. P. S. AND HELLER, J. (2009). A simulation-approximation approach to sample size planning for high-dimensional classification studies. Biostatistics 10, 424-435.
    • (2009) Biostatistics , vol.10 , pp. 424-435
    • De Valpine, P.1    Bitter, H.M.2    Brown, M.P.S.3    Heller, J.4
  • 3
    • 84859549618 scopus 로고    scopus 로고
    • E1071: Misc functions of the Department of Statistics (e1071)
    • DIMITRIADOU, E., HORNIK, K., LEISCH, F., MEYER, D. AND WEINGESSEL, A. (2005). e1071: misc functions of the Department of Statistics (e1071). TU Wien 1, 5-11. http://CRAN.R-project.org/.
    • (2005) TU Wien , vol.1 , pp. 5-11
    • Dimitriadou, E.1    Hornik, K.2    Leisch, F.3    Meyer, D.4    Weingessel, A.5
  • 4
    • 19544383638 scopus 로고    scopus 로고
    • Sample size determination in microarray experiments for class comparison and prognostic classification
    • DOBBIN, K. K. AND SIMON, R. M. (2005). Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics 6, 27-38.
    • (2005) Biostatistics , vol.6 , pp. 27-38
    • Dobbin, K.K.1    Simon, R.M.2
  • 5
    • 33845404310 scopus 로고    scopus 로고
    • Sample size planning for developing classifiers using high-dimensional DNA microarray data
    • DOI 10.1093/biostatistics/kxj036
    • DOBBIN, K. K. AND SIMON, R. M. (2007). Sample size planning for developing classifiers using high-dimensional DNA microarray data. Biostatistics 8, 101-117. (Pubitemid 44906105)
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 101-117
    • Dobbin, K.K.1    Simon, R.M.2
  • 6
    • 40749107034 scopus 로고    scopus 로고
    • How large a training set is needed to develop a classifier for microarray data?
    • DOI 10.1158/1078-0432.CCR-07-0443
    • DOBBIN, K. K., ZHAO, Y. AND SIMON, R. M. (2008). How large a training set is needed to develop a classifier for microarray data. Clinical Cancer Research 14, 108-114. (Pubitemid 351377984)
    • (2008) Clinical Cancer Research , vol.14 , Issue.1 , pp. 108-114
    • Dobbin, K.K.1    Zhao, Y.2    Simon, R.M.3
  • 7
    • 12744260155 scopus 로고    scopus 로고
    • How many samples are needed to build a classifier: A general sequential approach
    • FU, W. J., DOUGHERTY, E. R., MALLICK, B. AND CARROLL, R. J. (2005). How many samples are needed to build a classifier: a general sequential approach. Bioinformatics 21, 63-70.
    • (2005) Bioinformatics , vol.21 , pp. 63-70
    • J, F.U.W.1    Dougherty, E.R.2    Mallick, B.3    Carroll, R.J.4
  • 8
    • 78049468247 scopus 로고    scopus 로고
    • A machine learning pipeline for quantitative phenotype prediction from genotype data
    • GUZZETTA, G., JURMAN, G. AND FURLANELLO, C. (2010). A machine learning pipeline for quantitative phenotype prediction from genotype data. BMC Bioinformatics 11 (Suppl 8), S3.
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 8
    • Guzzetta, G.1    Jurman, G.2    Furlanello, C.3
  • 9
    • 65449153930 scopus 로고    scopus 로고
    • A web server for inferring the human N-acetyltransferase-2 (NAT2) enzymatic phenotype from NAT2 genotype
    • KUZNETSOV, I. B., MCDUFFIE, M. AND MOSLEHI, R. (2009). A web server for inferring the human N-acetyltransferase-2 (NAT2) enzymatic phenotype from NAT2 genotype. Bioinformatics 25, 1185-1186.
    • (2009) Bioinformatics , vol.25 , pp. 1185-1186
    • Kuznetsov, I.B.1    McDuffie, M.2    Moslehi, R.3
  • 10
    • 0001477645 scopus 로고
    • On expected probabilities of misclassification in discriminant analysis, necessary sample size, and a relation with the multiple correlation coefficient
    • LACHENBRUCH, P. A. (1968). On expected probabilities of misclassification in discriminant analysis, necessary sample size, and a relation with the multiple correlation coefficient. Biometrics 24, 823-834.
    • (1968) Biometrics , vol.24 , pp. 823-834
    • Lachenbruch, P.A.1
  • 13
    • 36949021059 scopus 로고    scopus 로고
    • Detecting high-order interactions of single nucleotide polymorphisms using genetic programming
    • DOI 10.1093/bioinformatics/btm522
    • NUNKESSER, R., BERNHOLT, T., SCHWENDER, H., ICKSTADT, K. AND WEGENER, I. (2007). Detecting highorder interactions of single nucleotide polymorphisms using genetic programming. Bioinformatics 23, 3280-3288. (Pubitemid 350238879)
    • (2007) Bioinformatics , vol.23 , Issue.24 , pp. 3280-3288
    • Nunkesser, R.1    Bernholt, T.2    Schwender, H.3    Ickstadt, K.4    Wegener, I.5
  • 14
    • 77954641535 scopus 로고    scopus 로고
    • New kernel methods for phenotype prediction from genotype data
    • ONUKI, R., SHIBUYA, T. AND KANEHISA, M. (2010). New kernel methods for phenotype prediction from genotype data. Genome Informatics 22, 132-141.
    • (2010) Genome Informatics , vol.22 , pp. 132-141
    • Onuki, R.1    Shibuya, T.2    Kanehisa, M.3
  • 15
    • 33645392027 scopus 로고    scopus 로고
    • SNP selection at the NAT2 locus for an accurate prediction of the acetylation phenotype
    • SABBAGH, A. AND DARLU, P. (2006). SNP selection at the NAT2 locus for an accurate prediction of the acetylation phenotype. Genetics in Medicine 8, 76-85.
    • (2006) Genetics in Medicine , vol.8 , pp. 76-85
    • Sabbagh, A.1    Darlu, P.2
  • 16
    • 0141724633 scopus 로고    scopus 로고
    • Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks
    • DOI 10.1086/377453
    • WANG, D. C. AND LARDER, B. (2003). Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks. Journal of Infectious Diseases 188, 653-660. (Pubitemid 37115177)
    • (2003) Journal of Infectious Diseases , vol.188 , Issue.5 , pp. 653-660
    • Wang, D.1    Larder, B.2
  • 17
    • 34948877698 scopus 로고    scopus 로고
    • Prediction of individual genetic risk to disease from genome-wide association studies
    • DOI 10.1101/gr.6665407
    • WRAY, N. R., GODDARD, M. E. AND VISSCHER. P. M. (2007). Prediction of individual genetic risk to disease from genome-wide association studies. Genome Research 17, 1520-1528. (Pubitemid 47529436)
    • (2007) Genome Research , vol.17 , Issue.10 , pp. 1520-1528
    • Wray, N.R.1    Goddard, M.E.2    Visscher, P.M.3
  • 18
    • 39449089088 scopus 로고    scopus 로고
    • Effective selection of informative SNPs and classification on the HapMap genotype data
    • ZHOU, N. AND WANG, L. (2007). Effective selection of informative SNPs and classification on the HapMap genotype data. BMC Bioinformatics 8, 484.
    • (2007) BMC Bioinformatics , vol.8 , pp. 484
    • Zhou, N.1    Wang, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.