메뉴 건너뛰기




Volumn 29, Issue 4, 2012, Pages 524-528

Nonlinear modeling of bearingless permanent magnet synchronous motors with least squares support vector machiness

Author keywords

Bearingless permanent magnet synchronous motor; Least squares support vector machines; Modeling; Nonlinear model

Indexed keywords

ANALYSIS METHOD; EXPERIMENTAL PROTOTYPE; FINITE-ELEMENTS METHOD; FLUX-LINKAGE CHARACTERISTICS; HIGHLY NONLINEAR; LEAST SQUARE; LEAST SQUARES SUPPORT VECTOR MACHINES; MODEL-BASED OPC; NEURAL NETWORK METHOD; NON-LINEAR MODEL; NON-LINEARITY; NONLINEAR MODELING; OPTIMAL CONTROLLER; PERMANENT MAGNET SYNCHRONOUS MOTOR; SAMPLED DATA; SUPPORT VECTOR;

EID: 84862976277     PISSN: 10008152     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (6)

References (12)
  • 2
    • 65649150707 scopus 로고    scopus 로고
    • Bearingless motor's radial suspension force control based on flux equivalent with virtual winding aurrent analysis method
    • ZHU H Q, CHENG Q L. Bearingless motor's radial suspension force control based on flux equivalent with virtual winding aurrent analysis method[J]. Chinese Science Bulletub, 2009, 54(9): 1590-1598.
    • (2009) Chinese Science Bulletub , vol.54 , Issue.9 , pp. 1590-1598
    • Zhu, H.Q.1    Cheng, Q.L.2
  • 5
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 6
    • 0005906715 scopus 로고    scopus 로고
    • Support vector machines: a nonlinear modeling and control perspective
    • SUYKENS J A K. Support vector machines: a nonlinear modeling and control perspective[J]. European Journal of Control, 2001, 7(2): 311-327.
    • (2001) European Journal of Control , vol.7 , Issue.2 , pp. 311-327
    • Suykens, J.A.K.1
  • 7
    • 0036161010 scopus 로고    scopus 로고
    • A probabilistic framework for SVM regression and error estimation
    • GAO J B, GUNN S R, HARRIS C J, et al. A probabilistic framework for SVM regression and error estimation[J]. Machine Learning, 2002, 46(3): 71-89.
    • (2002) Machine Learning , vol.46 , Issue.3 , pp. 71-89
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3
  • 8
    • 78650937765 scopus 로고    scopus 로고
    • Support-vectormachine-based inverse internal model controller for electric arc furnace
    • LI Lei, MAO Zhizhong, JIA Mingxing, et al. Support-vectormachine-based inverse internal model controller for electric arc furnace[J]. Control Theory & Applications, 2010, 27(11): 1455-1462.
    • (2010) Control Theory & Applications , vol.27 , Issue.11 , pp. 1455-1462
    • Li, L.1    Mao, Z.2    Jia, M.3
  • 9
    • 53149083021 scopus 로고    scopus 로고
    • SVM-based approximate model control for electronic throttle valve
    • YUAN X, WANG Y, WU L. SVM-based approximate model control for electronic throttle valve[J]. IEEE Transactions on Vehicular Technology, 2008, 57(5): 2747-2756.
    • (2008) IEEE Transactions on Vehicular Technology , vol.57 , Issue.5 , pp. 2747-2756
    • Yuan, X.1    Wang, Y.2    Wu, L.3
  • 10
    • 79958711779 scopus 로고    scopus 로고
    • Variable universe fuzzy-least squares support-vector-machine compound control for ship course-keeping
    • LIU Sheng, WANG Yuchao, FU Huixuan. Variable universe fuzzy-least squares support-vector-machine compound control for ship course-keeping[J]. Control Theory & Applications, 2011, 28(4): 485-490.
    • (2011) Control Theory & Applications , vol.28 , Issue.4 , pp. 485-490
    • Liu, S.1    Wang, Y.2    Fu, H.3
  • 11
    • 77951982598 scopus 로고    scopus 로고
    • LS-SVM predictive control based on PSO for nonlinear systems
    • MU Chaoxu, ZHANG Ruimin, SUN Changyin. LS-SVM predictive control based on PSO for nonlinear systems[J]. Control Theory & Applications, 2010, 27(2): 164-168.
    • (2010) Control Theory & Applications , vol.27 , Issue.2 , pp. 164-168
    • Mu, C.1    Zhang, R.2    Sun, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.