메뉴 건너뛰기




Volumn , Issue , 2011, Pages 422-425

Histological image feature mining reveals emergent diagnostic properties for renal cancer

Author keywords

computer aided diagnosis; histology; image mining

Indexed keywords

CANCER DIAGNOSTICS; DIAGNOSTIC MODEL; DIAGNOSTIC PROBLEM; DIAGNOSTIC SYSTEMS; FEATURE SUBSET; HISTOLOGICAL IMAGES; IMAGE FEATURE SET; IMAGE FEATURES; IMAGE MINING; IMAGE PROPERTIES; RENAL TUMORS;

EID: 84862969855     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBM.2011.112     Document Type: Conference Paper
Times cited : (18)

References (19)
  • 1
    • 0037937269 scopus 로고    scopus 로고
    • Multiwavelet grading of pathological images of prostate
    • DOI 10.1109/TBME.2003.812194
    • K. Jafari-Khouzani and H. Soltanian-Zadeh, "Multiwavelet grading of pathological images of prostate," IEEE Transactions on Biomedical Engineering, vol. 50, pp. 697-704, 2003. (Pubitemid 36723603)
    • (2003) IEEE Transactions on Biomedical Engineering , vol.50 , Issue.6 , pp. 697-704
    • Jafari-Khouzani, K.1    Soltanian-Zadeh, H.2
  • 2
    • 67649515593 scopus 로고    scopus 로고
    • Automatic classification for pathological prostate images based on fractal analysis
    • P. W. Huang and C. H. Lee, "Automatic classification for pathological prostate images based on fractal analysis," Medical Imaging, IEEE Transactions on, vol. 28, pp. 1037-1050, 2009.
    • (2009) Medical Imaging, IEEE Transactions on , vol.28 , pp. 1037-1050
    • Huang, P.W.1    Lee, C.H.2
  • 6
    • 62349141165 scopus 로고    scopus 로고
    • Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading
    • O. Sertel, et al., "Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading," Journal of Signal Processing Systems, vol. 55, pp. 169-183, 2009.
    • (2009) Journal of Signal Processing Systems , vol.55 , pp. 169-183
    • Sertel, O.1
  • 8
    • 70449350620 scopus 로고    scopus 로고
    • Automated cell counting and cluster segmentation using concavity detection and ellipse fitting techniques
    • S. Kothari, et al., "Automated cell counting and cluster segmentation using concavity detection and ellipse fitting techniques," in IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, pp. 795-798.
    • IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009 , pp. 795-798
    • Kothari, S.1
  • 10
    • 0026398342 scopus 로고
    • Unsupervised texture segmentation using Gabor filters
    • A. K. Jain and F. Farrokhnia, "Unsupervised texture segmentation using Gabor filters," Pattern recognition, vol. 24, pp. 1167-1186, 1991.
    • (1991) Pattern Recognition , vol.24 , pp. 1167-1186
    • Jain, A.K.1    Farrokhnia, F.2
  • 12
    • 62349094031 scopus 로고    scopus 로고
    • Automated Renal Cell Carcinoma Subtype Classification Using Morphological, Textural and Wavelets Based Features
    • Q. Chaudry, et al., "Automated Renal Cell Carcinoma Subtype Classification Using Morphological, Textural and Wavelets Based Features," Journal of Signal Processing Systems, vol. 55, pp. 15-23, 2009.
    • (2009) Journal of Signal Processing Systems , vol.55 , pp. 15-23
    • Chaudry, Q.1
  • 15
    • 51049109414 scopus 로고    scopus 로고
    • Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features
    • S. Doyle, et al., "Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features," in IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, pp. 496-499.
    • IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008 , pp. 496-499
    • Doyle, S.1
  • 16
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • V. G. Tusher, et al., "Significance analysis of microarrays applied to the ionizing radiation response," Proceedings of the National Academy of Sciences, vol. 98, p. 5116, 2001.
    • (2001) Proceedings of the National Academy of Sciences , vol.98 , pp. 5116
    • Tusher, V.G.1
  • 17
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, et al., "Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1226-1238, 2005. (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 18
    • 0038175144 scopus 로고    scopus 로고
    • GoMiner: A resource for biological interpretation of genomic and proteomic data
    • B. R. Zeeberg, et al., "GoMiner: a resource for biological interpretation of genomic and proteomic data," Genome Biol, vol. 4, p. R28, 2003.
    • (2003) Genome Biol , vol.4
    • Zeeberg, B.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.