메뉴 건너뛰기




Volumn , Issue , 2011, Pages 12-16

Local spatio-temporal feature based voting framework for complex human activity detection and localization

Author keywords

[No Author keywords available]

Indexed keywords

BACKGROUND CLUTTER; DATA SETS; FEATURE-BASED; HUMAN ACTIVITIES; HUMAN-ACTIVITY DETECTION; IMPLICIT SHAPE MODELS; REAL-WORLD APPLICATION; SPATIO-TEMPORAL; VIDEO CLIPS; VIDEO SEQUENCES; VOTING METHOD;

EID: 84862890792     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ACPR.2011.6166678     Document Type: Conference Paper
Times cited : (8)

References (17)
  • 1
    • 77955995201 scopus 로고    scopus 로고
    • A hough transform-based voting framework for action recognition
    • J. Gall A. Yao and V. Gool. A hough transform-based voting framework for action recognition. In CVPR, 2010.
    • (2010) CVPR
    • Gall, J.1    Yao, A.2    Gool, V.3
  • 2
    • 0019397313 scopus 로고
    • Generalizing the hough transform to detect arbitrary shapes
    • D. Ballard. Generalizing the hough transform to detect arbitrary shapes. PR, 13(2):109122, 1981.
    • (1981) PR , vol.13 , Issue.2 , pp. 109122
    • Ballard, D.1
  • 3
    • 33846622081 scopus 로고    scopus 로고
    • Behavior recognition via sparse spatio-temporal features
    • P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal features. In VS-PETS, 2005.
    • (2005) VS-PETS
    • Dollar, P.1    Rabaud, V.2    Cottrell, G.3    Belongie, S.4
  • 4
    • 84862906792 scopus 로고    scopus 로고
    • Variations of a hough-voting action recognition system
    • D. Waltiberg, J. Gall A. Yao, and V. Gool. Variations of a hough-voting action recognition system. In ICPR, 2010.
    • (2010) ICPR
    • Waltiberg, D.1    Gall, J.2    Yao, A.3    Gool, V.4
  • 5
    • 70450201402 scopus 로고    scopus 로고
    • Class-specific hough forests for object detection
    • J. Gall and V. Lempitsky. Class-specific hough forests for object detection. In CVPR, 2009.
    • (2009) CVPR
    • Gall, J.1    Lempitsky, V.2
  • 6
    • 84898890371 scopus 로고    scopus 로고
    • Evaluation of local spatiotemporal features for action recognition
    • H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid. Evaluation of local spatiotemporal features for action recognition. In BMV C, 2009.
    • (2009) BMV , vol.100
    • Wang, H.1    Ullah, M.M.2    Klaser, A.3    Laptev, I.4    Schmid, C.5
  • 7
    • 80052874353 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • J. C. Niebles, C. W. Chen, and L. Fei-Fei. Modeling temporal structure of decomposable motion segments for activity classification. In ECCV, 2010.
    • (2010) ECCV
    • Niebles, J.C.1    Chen, C.W.2    Fei-Fei, L.3
  • 8
    • 50649103739 scopus 로고    scopus 로고
    • Event detection in crowded videos
    • Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In ICCV, 2007.
    • (2007) ICCV
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 9
    • 0344551869 scopus 로고    scopus 로고
    • Space-time interest points
    • I. Laptev and T. Lindeberg. Space-time interest points. In ICCV, 2003.
    • (2003) ICCV
    • Laptev, I.1    Lindeberg, T.2
  • 11
    • 39749124915 scopus 로고    scopus 로고
    • Robust object detection by interleaving categorization and segmentation
    • B. Leibe, A. Leonardis, and B. Schiele. Robust object detection by interleaving categorization and segmentation. IJCV, 77(1-3):259289, 2008.
    • (2008) IJCV , vol.77 , Issue.1-3 , pp. 259289
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 12
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60:91110, 2004.
    • (2004) IJCV , vol.60 , pp. 91110
    • Lowe, D.1
  • 13
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. IJCV, 79(3):299318, 2008.
    • (2008) IJCV , vol.79 , Issue.3 , pp. 299318
    • Niebles, J.C.1    Wang, H.2    Fei-Fei, L.3
  • 14
    • 70449570849 scopus 로고    scopus 로고
    • An implicit spatiotemporal shape model for human activity localization and recognition
    • A. Oikonomopoulos, I. Patras, and M. Pantic. An implicit spatiotemporal shape model for human activity localization and recognition. In CVPR, 2009.
    • (2009) CVPR
    • Oikonomopoulos, A.1    Patras, I.2    Pantic, M.3
  • 15
    • 85026939101 scopus 로고    scopus 로고
    • Quasi-periodic event analysis for social game retrieval
    • P. Wang, G. D. Abowd, and J. M. Rehg. Quasi-periodic event analysis for social game retrieval. In ICC V, 2009.
    • (2009) ICCV
    • Wang, P.1    Abowd, G.D.2    Rehg, J.M.3
  • 16
    • 77953187842 scopus 로고    scopus 로고
    • Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities
    • M. Ryoo and J. Aggarwal. Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities. In ICCV, 2009.
    • (2009) ICCV
    • Ryoo, M.1    Aggarwal, J.2
  • 17
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local svm approach
    • C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a local svm approach. In ICPR, 2004.
    • (2004) ICPR
    • Schuldt, C.1    Laptev, I.2    Caputo, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.