메뉴 건너뛰기




Volumn 218, Issue 22, 2012, Pages 10861-10870

Numerical techniques for the variable order time fractional diffusion equation

Author keywords

Convergence; Fourier analysis; Numerical method; Solvability; Stability; Variable order time fractional diffusion equation

Indexed keywords

COMPUTATIONALLY EFFICIENT; CONVERGENCE; FRACTIONAL OPERATORS; FUNDAMENTAL CHARACTERISTICS; NUMERICAL EXAMPLE; NUMERICAL SCHEME; NUMERICAL TECHNIQUES; PHYSICAL MODELING; PHYSICAL VARIABLES; SOLVABILITY; TIME FRACTIONAL DIFFUSION EQUATION; VARIABLE ORDER;

EID: 84862850103     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.04.047     Document Type: Article
Times cited : (185)

References (29)
  • 1
    • 0035538580 scopus 로고    scopus 로고
    • Spectral analysis of fractional kinetic equations with random data
    • V.V. Anh, and N.N. Leonenko Spectral analysis of fractional kinetic equations with random data J. Statis. Phys. 104 5-6 2001 1349 1387
    • (2001) J. Statis. Phys. , vol.104 , Issue.56 , pp. 1349-1387
    • Anh, V.V.1    Leonenko, N.N.2
  • 3
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • C. Chen, F. Liu, V. Anh, and I. Turner Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation SIAM J. Sci. Comput. 32 4 2010 1740 1760
    • (2010) SIAM J. Sci. Comput. , vol.32 , Issue.4 , pp. 1740-1760
    • Chen, C.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 4
    • 0346897985 scopus 로고    scopus 로고
    • Mechanics with variable-order differential operators
    • C.F.M. Coimbra Mechanics with variable-order differential operators Ann. Phys. 12 11-12 2003 692 703
    • (2003) Ann. Phys. , vol.12 , Issue.1112 , pp. 692-703
    • Coimbra, C.F.M.1
  • 5
    • 61449262957 scopus 로고    scopus 로고
    • Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation
    • G. Diaz, and C.F.M. Coimbra Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation Nonlinear Dynam. 56 2009 145 157
    • (2009) Nonlinear Dynam. , vol.56 , pp. 145-157
    • Diaz, G.1    Coimbra, C.F.M.2
  • 6
    • 33947198285 scopus 로고    scopus 로고
    • Fractional extensions of the temperature field problems in oil strata
    • Leda Galue, S.L. Kalla, and B.N. Al-Saqabi Fractional extensions of the temperature field problems in oil strata Appl. Math. Comput. 186 2007 35 44
    • (2007) Appl. Math. Comput. , vol.186 , pp. 35-44
    • Galue, L.1    Kalla, S.L.2    Al-Saqabi, B.N.3
  • 7
    • 84964754816 scopus 로고    scopus 로고
    • Discrete Gronwall lemma and applications
    • University of North Dakota, 24 October
    • J.M. Holte, Discrete Gronwall lemma and applications, MAA-NCS Meeting at the University of North Dakota, 24 October 2009.
    • (2009) MAA-NCS Meeting
    • Holte, J.M.1
  • 8
    • 0034206621 scopus 로고    scopus 로고
    • Constitutive dynamic-order model for nonlinear contact phenomena
    • D. Ingman, J. Suzdalnitsky, and M. Zeifman Constitutive dynamic-order model for nonlinear contact phenomena J. Appl. Mech. 67 2000 383 390
    • (2000) J. Appl. Mech. , vol.67 , pp. 383-390
    • Ingman, D.1    Suzdalnitsky, J.2    Zeifman, M.3
  • 9
    • 10144243375 scopus 로고    scopus 로고
    • Control of damping oscilations by fractional differential operator with time-dependent order
    • D. Ingman, and J. Suzdalnitsky Control of damping oscilations by fractional differential operator with time-dependent order Comput. Methods Appl. Mech. Eng. 193 2004 5585 5595
    • (2004) Comput. Methods Appl. Mech. Eng. , vol.193 , pp. 5585-5595
    • Ingman, D.1    Suzdalnitsky, J.2
  • 10
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • T.A.M. Langlands, and B.I. Henry The accuracy and stability of an implicit solution method for the fractional diffusion equation J. Comput. Phys. 205 2005 719 736
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 11
    • 67349098149 scopus 로고    scopus 로고
    • Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractonal diffusion equation
    • R. Lin, F. Liu, V. Anh, and I. Turner Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractonal diffusion equation Appl. Math. Comput. 212 2009 435 445
    • (2009) Appl. Math. Comput. , vol.212 , pp. 435-445
    • Lin, R.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 12
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Y. Lin, and C. Xu Finite difference/spectral approximations for the time-fractional diffusion equation J. Comput. Phys. 225 2007 1533 1552
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.2
  • 13
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of space fractional Fokker-Planck equation
    • F. Liu, V. Anh, and I. Turner Numerical solution of space fractional Fokker-Planck equation J. Comput. Appl. Math. 166 2004 209 219
    • (2004) J. Comput. Appl. Math. , vol.166 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 14
    • 34547673244 scopus 로고    scopus 로고
    • Stability and convergence of difference methods for the space-time fractional advection-diffusion equation
    • F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage Stability and convergence of difference methods for the space-time fractional advection-diffusion equation Appl. Math. Comput. 191 1 2007 12 20
    • (2007) Appl. Math. Comput. , vol.191 , Issue.1 , pp. 12-20
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4    Burrage, K.5
  • 15
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • F. Liu, C. Yang, and K. Burrage Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term J. Comput. Appl. Math. 231 2009 160 176
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 16
    • 79961005041 scopus 로고    scopus 로고
    • Novel techniques in parameter estimation for fractional dynamical models arising from biological systems
    • F. Liu, and K. Burrage Novel techniques in parameter estimation for fractional dynamical models arising from biological systems Comput. Math. Appl. 62 2011 822 833
    • (2011) Comput. Math. Appl. , vol.62 , pp. 822-833
    • Liu, F.1    Burrage, K.2
  • 17
    • 78649919287 scopus 로고    scopus 로고
    • Two new implicit numerical methods for the fractional cable equation
    • 10.1115/1.4002267
    • F. Liu, Q. Yang, and I. Turner Two new implicit numerical methods for the fractional cable equation J. Comput. Nonlinear Dynam. 6 1 2011 01108 10.1115/1.4002267
    • (2011) J. Comput. Nonlinear Dynam. , vol.6 , Issue.1 , pp. 01108
    • Liu, F.1    Yang, Q.2    Turner, I.3
  • 18
    • 84868214613 scopus 로고    scopus 로고
    • Numerical methods and analysis for a class of fractional advection-dispersion models
    • in press
    • F. Liu, P. Zhuang, K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., in press. .
    • Comput. Math. Appl.
    • Liu, F.1    Zhuang, P.2    Burrage, K.3
  • 20
    • 0036650957 scopus 로고    scopus 로고
    • Variable order and distributed order fractional operators
    • C.F. Lorenzo, and T.T. Hartley Variable order and distributed order fractional operators Nonlinear Dynam. 29 2002 57 98
    • (2002) Nonlinear Dynam. , vol.29 , pp. 57-98
    • Lorenzo, C.F.1    Hartley, T.T.2
  • 21
    • 33746208811 scopus 로고    scopus 로고
    • Approximations of fractional integrals and Caputo fractional derivatives
    • Zaid Odibat Approximations of fractional integrals and Caputo fractional derivatives Appl. Math. Comput. 178 2006 527 533
    • (2006) Appl. Math. Comput. , vol.178 , pp. 527-533
    • Odibat, Z.1
  • 22
    • 52349084738 scopus 로고    scopus 로고
    • Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere
    • H.T.C. Pedro, M.H. Kobayashi, J.M.C. Pereira, and C.F.M. Coimbra Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere J. Vib. Control 14 2008 1659 1672
    • (2008) J. Vib. Control , vol.14 , pp. 1659-1672
    • Pedro, H.T.C.1    Kobayashi, M.H.2    Pereira, J.M.C.3    Coimbra, C.F.M.4
  • 23
    • 84862843990 scopus 로고    scopus 로고
    • On the selection and meaning of variable order operators for dynamic modeling
    • 10.1155/2010/846107
    • E.S. Ramirez, and F.M. Coimbra On the selection and meaning of variable order operators for dynamic modeling Int. J. Differ. Equat. Vol. 2010 10.1155/2010/846107
    • (2010) Int. J. Differ. Equat. Vol.
    • Ramirez, E.S.1    Coimbra, F.M.2
  • 24
    • 84948882036 scopus 로고
    • Intergation and differentiation to a variable fractional order
    • S.G. Samko, and B. Ross Intergation and differentiation to a variable fractional order Integral Trans. Special Func. 1 4 1993 277 300
    • (1993) Integral Trans. Special Func. , vol.1 , Issue.4 , pp. 277-300
    • Samko, S.G.1    Ross, B.2
  • 25
    • 0010073424 scopus 로고
    • Fractional integration and differentiation of variable order
    • S.G. Samko Fractional integration and differentiation of variable order Anal. Math. 21 1995 213 236
    • (1995) Anal. Math. , vol.21 , pp. 213-236
    • Samko, S.G.1
  • 26
    • 25444483399 scopus 로고    scopus 로고
    • The variable viscoelasticity oscillator
    • C.M. Soon, F.M. Coimbra, and M.H. Kobayashi The variable viscoelasticity oscillator Ann. Phys. 14 6 2005 378 389
    • (2005) Ann. Phys. , vol.14 , Issue.6 , pp. 378-389
    • Soon, C.M.1    Coimbra, F.M.2    Kobayashi, M.H.3
  • 27
    • 68649098514 scopus 로고    scopus 로고
    • Variable-order fractional differential operators in anomalous diffusion modeling
    • H. Sun, W. Chen, and Y. Chen Variable-order fractional differential operators in anomalous diffusion modeling Physica A 388 2009 4586 4592
    • (2009) Physica A , vol.388 , pp. 4586-4592
    • Sun, H.1    Chen, W.2    Chen, Y.3
  • 28
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation
    • P. Zhuang, F. Liu, V. Anh, and I. Turner New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation SIAM J. Numer. Anal. 46 2 2008 1079 1095
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 29
    • 84907893973 scopus 로고    scopus 로고
    • Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
    • P. Zhuang, F. Liu, V. Anh, and I. Turner Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term SIAM J. Numer. Anal. 47 2009 1760 1781
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.