메뉴 건너뛰기




Volumn 184, Issue 4, 2012, Pages 2475-2485

The assessment of spatial distribution of soil salinity risk using neural network

Author keywords

Environmental correlation; Irrigated agriculture; Spatial variation; Upscaling; Validation

Indexed keywords

ENVIRONMENTAL CORRELATIONS; IRRIGATED AGRICULTURE; SPATIAL VARIATIONS; UPSCALING; VALIDATION;

EID: 84862848561     PISSN: 01676369     EISSN: 15732959     Source Type: Journal    
DOI: 10.1007/s10661-011-2132-5     Document Type: Article
Times cited : (50)

References (29)
  • 1
    • 84862850148 scopus 로고    scopus 로고
    • Land degradation assessment in drylands (LADA). Research and Design Institute Uzgipromeliovodkhoz
    • Abdullaev, U. (2003).Republic of Uzbekistan. Land degradation assessment in drylands (LADA). Research and Design Institute Uzgipromeliovodkhoz, pp. 43.
    • (2003) Republic of Uzbekistan , pp. 43
    • Abdullaev, U.1
  • 2
    • 77953290325 scopus 로고    scopus 로고
    • The spatial distribution of soil salinity: Detection and prediction
    • Bonn, Germany, University of Bonn
    • Akramkhanov, A. (2005). The spatial distribution of soil salinity: Detection and prediction. ZEF Series in Ecology and Development No. 32, Bonn, Germany, University of Bonn.
    • (2005) ZEF Series in Ecology and Development No. 32
    • Akramkhanov, A.1
  • 4
    • 84862903272 scopus 로고
    • Soil salinity assessment using the EM38: Field operating instructions and data interpretation
    • Western Australia, Department of Agriculture
    • Bennett, D. L., George, R. J., & Ryder, A. (1995). Soil salinity assessment using the EM38: Field operating instructions and data interpretation. Miscellaneous Publication 4/95, Western Australia, Department of Agriculture.
    • (1995) Miscellaneous Publication 4/95
    • Bennett, D.L.1    George, R.J.2    Ryder, A.3
  • 5
    • 85102609345 scopus 로고    scopus 로고
    • The contribution and importance of soil scientists in interdisciplinary studies dealing with land
    • R. J. Wagenet, & J. Bouma (Eds.) SSSA Special Publication 45
    • Bouma, J., & Hoosbeek, M. R. (1996). The contribution and importance of soil scientists in interdisciplinary studies dealing with land. In R. J. Wagenet, & J. Bouma (Eds.), The role of soil science in interdsciplinary research (pp. 1-15). SSSA Special Publication 45.
    • (1996) The Role of Soil Science in Interdsciplinary Research , pp. 1-15
    • Bouma, J.1    Hoosbeek, M.R.2
  • 6
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden, G. J., Maier, H. R., & Dandy, G. C. (2002). Optimal division of data for neural network models in water resources applications. Water Resources Research, 38, 1-11.
    • (2002) Water Resources Research , vol.38 , pp. 1-11
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 8
    • 84862903271 scopus 로고    scopus 로고
    • Department for Natural Resources. Release 2.2. Minnesota: Department for Natural Resources
    • Department for Natural Resources (2004). DNR random sample generator. Release 2.2. Minnesota: Department for Natural Resources.
    • (2004) DNR Random Sample Generator
  • 10
    • 0034490831 scopus 로고    scopus 로고
    • Broad-scale spatial prediction of areas at risk from dryland salinity
    • Evans, F. H., & Caccetta, P. A. (2000). Broad-scale spatial prediction of areas at risk from dryland salinity. Cartography, 29, 33-40.
    • (2000) Cartography , vol.29 , pp. 33-40
    • Evans, F.H.1    Caccetta, P.A.2
  • 11
    • 0031597561 scopus 로고    scopus 로고
    • Obtaining soil and land quality indicators using research chains and geostatistical methods
    • Hoosbeek, M. R., & Bouma, J. (1998). Obtaining soil and land quality indicators using research chains and geostatistical methods. Nutrient Cycling in Agroecosystems, 50, 35-50.
    • (1998) Nutrient Cycling in Agroecosystems , vol.50 , pp. 35-50
    • Hoosbeek, M.R.1    Bouma, J.2
  • 12
    • 0022267698 scopus 로고
    • Spatial and spectral relationships of soil properties and microtopography: I. Density and thickness of A horizon
    • Kachanoski, R. G., Rolston, D. E., & de Jong, E. (1985). Spatial and spectral relationships of soil properties and microtopography: I. Density and thickness of A horizon. Soil Science Society of America Journal, 49, 804-812.
    • (1985) Soil Science Society of America Journal , vol.49 , pp. 804-812
    • Kachanoski, R.G.1    Rolston, D.E.2    De Jong, E.3
  • 13
    • 33750368862 scopus 로고    scopus 로고
    • Prediction of near-surface soil moisture at large scale by digital terrain modelling and neural networks
    • Lavado, F., Maneta, M., & Schnabel, S. (2006). Prediction of near-surface soil moisture at large scale by digital terrain modelling and neural networks. Environmental Monitoring and Assessment, 121(1-3), 211-230.
    • (2006) Environmental Monitoring and Assessment , vol.121 , Issue.1-3 , pp. 211-230
    • Lavado, F.1    Maneta, M.2    Schnabel, S.3
  • 14
    • 1642359253 scopus 로고    scopus 로고
    • Topographic attributes to predict soil hydraulic properties along a hillslope transect
    • Leij, F. J., Romano, N., Palladino, M., Schaap, M. G., & Coppola, A. (2004). Topographic attributes to predict soil hydraulic properties along a hillslope transect. Water Resources Research, 40, W02407.
    • (2004) Water Resources Research , vol.40
    • Leij, F.J.1    Romano, N.2    Palladino, M.3    Schaap, M.G.4    Coppola, A.5
  • 15
    • 0028806808 scopus 로고
    • Spatial prediction of soil salinity using electromagnetic induction techniques. 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation
    • Lesch, S. M., Strauss, D. J., & Rhoades, J. D. (1995). Spatial prediction of soil salinity using electromagnetic induction techniques. 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and estimation. Water Resources Research, 31, 387-398.
    • (1995) Water Resources Research , vol.31 , pp. 387-398
    • Lesch, S.M.1    Strauss, D.J.2    Rhoades, J.D.3
  • 16
    • 0032855262 scopus 로고    scopus 로고
    • Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting
    • Maier, H. R., & Dandy, G. C. (1999). Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting. Water Resources Research, 35, 2591-2596.
    • (1999) Water Resources Research , vol.35 , pp. 2591-2596
    • Maier, H.R.1    Dandy, G.C.2
  • 18
    • 0032895729 scopus 로고    scopus 로고
    • Spatial prediction of soil properties using environmental correlation
    • McKenzie, N. J., & Ryan, P. J. (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89, 67-94.
    • (1999) Geoderma , vol.89 , pp. 67-94
    • McKenzie, N.J.1    Ryan, P.J.2
  • 21
    • 0034867260 scopus 로고    scopus 로고
    • Identification of the spatial distribution of soils using a process-based terrain characterization
    • Park, S. J., McSweeney, K., & Lowery, B. (2001). Identification of the spatial distribution of soils using a process-based terrain characterization. Geoderma, 103, 249-272.
    • (2001) Geoderma , vol.103 , pp. 249-272
    • Park, S.J.1    McSweeney, K.2    Lowery, B.3
  • 25
    • 0003370569 scopus 로고    scopus 로고
    • Soil salinity assessment: Methods and interpretation of electrical conductivity measurements
    • Rhoades, J. D., Chanduvi, F., & Lesch, S. (1999). Soil salinity assessment: Methods and interpretation of electrical conductivity measurements. FAO Irrigation and Drainage Paper 57.
    • (1999) FAO Irrigation and Drainage Paper , vol.57
    • Rhoades, J.D.1    Chanduvi, F.2    Lesch, S.3
  • 26
    • 0034977135 scopus 로고    scopus 로고
    • Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton
    • Triantafilis, J., Odeh, I. O. A., & McBratney, A. B. (2001). Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Science Society of America Journal, 65, 869-878.
    • (2001) Soil Science Society of America Journal , vol.65 , pp. 869-878
    • Triantafilis, J.1    Odeh, I.O.A.2    McBratney, A.B.3
  • 27
    • 0037051187 scopus 로고    scopus 로고
    • Interpretation of salinity and irrigation effects on soybean canopy reflectance in visible and near-infrared spectrum domain
    • Wang, D., Wilson, C., & Shannon, M. C. (2002). Interpretation of salinity and irrigation effects on soybean canopy reflectance in visible and near-infrared spectrum domain. International Journal of Remote Sensing, 23, 811-824.
    • (2002) International Journal of Remote Sensing , vol.23 , pp. 811-824
    • Wang, D.1    Wilson, C.2    Shannon, M.C.3
  • 29
    • 0034103559 scopus 로고    scopus 로고
    • Mapping soil landscape as spatial continua: The neural network approach
    • Zhu, A. X. (2000). Mapping soil landscape as spatial continua: The neural network approach. Water Resources Research, 36, 663-677.
    • (2000) Water Resources Research , vol.36 , pp. 663-677
    • Zhu, A.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.