-
1
-
-
0004034319
-
-
Springer-Verlag, Berlin-Heidelberg-New York
-
Arnold L. Random Dynamical Systems 1998, Springer-Verlag, Berlin-Heidelberg-New York.
-
(1998)
Random Dynamical Systems
-
-
Arnold, L.1
-
2
-
-
2442609874
-
A relative compactness criterion in Wiener-Sobolev spaces and application to semi-linear stochastic PDEs
-
Bally V., Saussereau B. A relative compactness criterion in Wiener-Sobolev spaces and application to semi-linear stochastic PDEs. J. Funct. Anal. 2004, 210:465-515.
-
(2004)
J. Funct. Anal.
, vol.210
, pp. 465-515
-
-
Bally, V.1
Saussereau, B.2
-
3
-
-
10044273281
-
Exponentially stable stationary solutions for stochastic evolution equations and their perturbation
-
Caraballo T., Kloeden P.E., Schmalfuss B. Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl. Math. Optim. 2004, 50:183-207.
-
(2004)
Appl. Math. Optim.
, vol.50
, pp. 183-207
-
-
Caraballo, T.1
Kloeden, P.E.2
Schmalfuss, B.3
-
4
-
-
78651392362
-
Stochastic climate dynamics: Random attractors and time-dependent invariant measures
-
Chekroun M.D., Simonnet E., Ghil M. Stochastic climate dynamics: Random attractors and time-dependent invariant measures. Phys. D 2011, 240:1685-1700.
-
(2011)
Phys. D
, vol.240
, pp. 1685-1700
-
-
Chekroun, M.D.1
Simonnet, E.2
Ghil, M.3
-
5
-
-
84862828331
-
Periodic distributions for linear equations with general additive noise
-
Chojnowska-Michalik A. Periodic distributions for linear equations with general additive noise. Bull. Pol. Acad. Sci. Math. 1990, 38(1-12):23-33.
-
(1990)
Bull. Pol. Acad. Sci. Math.
, vol.38
, Issue.1-12
, pp. 23-33
-
-
Chojnowska-Michalik, A.1
-
6
-
-
84862810940
-
Periodic linear equations with general additive noise in Hilbert spaces
-
Springer, Berlin, Stochastic Systems and Optimization
-
Chojnowska-Michalik A. Periodic linear equations with general additive noise in Hilbert spaces. Lecture Notes in Control and Inform. Sci. 1989, vol. 136:169-183. Springer, Berlin.
-
(1989)
Lecture Notes in Control and Inform. Sci.
, vol.136
, pp. 169-183
-
-
Chojnowska-Michalik, A.1
-
9
-
-
0346961357
-
Invariant manifolds for stochastic partial differential equations
-
Duan J., Lu K., Schmalfuss B. Invariant manifolds for stochastic partial differential equations. Ann. Probab. 2003, 31:2109-2135.
-
(2003)
Ann. Probab.
, vol.31
, pp. 2109-2135
-
-
Duan, J.1
Lu, K.2
Schmalfuss, B.3
-
10
-
-
33748854567
-
Smooth stable and unstable manifolds for stochastic evolutionary equations
-
Duan J., Lu K., Schmalfuss B. Smooth stable and unstable manifolds for stochastic evolutionary equations. J. Dynam. Differential Equations 2004, 16:949-972.
-
(2004)
J. Dynam. Differential Equations
, vol.16
, pp. 949-972
-
-
Duan, J.1
Lu, K.2
Schmalfuss, B.3
-
11
-
-
0034347507
-
Invariant measures for Burgers equation with stochastic forcing
-
E W., Khanin K., Mazel A., Sinai Ya. Invariant measures for Burgers equation with stochastic forcing. Ann. of Math. 2000, 151:877-960.
-
(2000)
Ann. of Math.
, vol.151
, pp. 877-960
-
-
E, W.1
Khanin, K.2
Mazel, A.3
Sinai, Y.4
-
12
-
-
79954860741
-
Pathwise random periodic solutions of stochastic differential equations
-
Feng C.R., Zhao H.Z., Zhou B. Pathwise random periodic solutions of stochastic differential equations. J. Differential Equations 2011, 251:119-149.
-
(2011)
J. Differential Equations
, vol.251
, pp. 119-149
-
-
Feng, C.R.1
Zhao, H.Z.2
Zhou, B.3
-
13
-
-
0001703525
-
Solutions of parabolic boundary problems existing for all time
-
Fife P.C. Solutions of parabolic boundary problems existing for all time. Arch. Ration. Mech. Anal. 1964, 16:155-186.
-
(1964)
Arch. Ration. Mech. Anal.
, vol.16
, pp. 155-186
-
-
Fife, P.C.1
-
16
-
-
67649318244
-
Periodicity and Sharkovsky's theorem for random dynamical systems
-
Klünger M. Periodicity and Sharkovsky's theorem for random dynamical systems. Stoch. Dyn. 2001, 1:299-338.
-
(2001)
Stoch. Dyn.
, vol.1
, pp. 299-338
-
-
Klünger, M.1
-
17
-
-
0033475636
-
Time-periodic solutions of linear parabolic differential equations
-
Lieberman G.M. Time-periodic solutions of linear parabolic differential equations. Comm. Partial Differential Equations 1999, 24:631-663.
-
(1999)
Comm. Partial Differential Equations
, vol.24
, pp. 631-663
-
-
Lieberman, G.M.1
-
18
-
-
0035894680
-
Time-periodic solutions of quasilinear parabolic differential equations. I. Dirichlet boundary conditions
-
Lieberman G.M. Time-periodic solutions of quasilinear parabolic differential equations. I. Dirichlet boundary conditions. J. Math. Anal. Appl. 2001, 264:617-638.
-
(2001)
J. Math. Anal. Appl.
, vol.264
, pp. 617-638
-
-
Lieberman, G.M.1
-
19
-
-
79954815349
-
Lyapunov exponents and invariant manifolds for infinite dimensional random dynamical systems in a Banach space
-
Lian Z., Lu K. Lyapunov exponents and invariant manifolds for infinite dimensional random dynamical systems in a Banach space. Mem. Amer. Math. Soc. 2010, 206(967):106.
-
(2010)
Mem. Amer. Math. Soc.
, vol.206
, Issue.967
, pp. 106
-
-
Lian, Z.1
Lu, K.2
-
20
-
-
76449109624
-
Representation of pathwise stationary solutions of stochastic Burgers equations
-
Liu Y., Zhao H.Z. Representation of pathwise stationary solutions of stochastic Burgers equations. Stoch. Dyn. 2009, 9(4):613-634.
-
(2009)
Stoch. Dyn.
, vol.9
, Issue.4
, pp. 613-634
-
-
Liu, Y.1
Zhao, H.Z.2
-
21
-
-
0033201498
-
Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity
-
Mattingly J. Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity. Comm. Math. Phys. 1999, 206(2):273-288.
-
(1999)
Comm. Math. Phys.
, vol.206
, Issue.2
, pp. 273-288
-
-
Mattingly, J.1
-
22
-
-
34748895787
-
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations
-
Mohammed S.-E.A., Zhang T., Zhao H.Z. The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations. Mem. Amer. Math. Soc. 2008, 196(917):1-105.
-
(2008)
Mem. Amer. Math. Soc.
, vol.196
, Issue.917
, pp. 1-105
-
-
Mohammed, S.-E.A.1
Zhang, T.2
Zhao, H.Z.3
-
24
-
-
79954891523
-
On a Sobolev space of functions of infinite number of variable
-
Peszat S. On a Sobolev space of functions of infinite number of variable. Bull. Pol. Acad. Sci. Math. 1993, 41:55-60.
-
(1993)
Bull. Pol. Acad. Sci. Math.
, vol.41
, pp. 55-60
-
-
Peszat, S.1
-
27
-
-
34547290416
-
A Concise Course on Stochastic Partial Differential Equations
-
Springer, Berlin
-
Prévôt C., Röckner M. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Math. 2007, vol. 1905. Springer, Berlin.
-
(2007)
Lecture Notes in Math.
, vol.1905
-
-
Prévôt, C.1
Röckner, M.2
-
28
-
-
33751098368
-
Two results concerning asymptotic behaviour of solutions of Burgers equation with force
-
Sinai Ya. Two results concerning asymptotic behaviour of solutions of Burgers equation with force. J. Statist. Phys. 1991, 64:1-12.
-
(1991)
J. Statist. Phys.
, vol.64
, pp. 1-12
-
-
Sinai, Y.1
-
29
-
-
0002075314
-
Burgers system driven by a periodic stochastic flows
-
Springer, Tokyo
-
Sinai Ya. Burgers system driven by a periodic stochastic flows. ItÔ's Stochastic Calculus and Probability Theory 1996, 347-353. Springer, Tokyo.
-
(1996)
ItÔ's Stochastic Calculus and Probability Theory
, pp. 347-353
-
-
Sinai, Y.1
-
32
-
-
34748856144
-
Stationary solutions of SPDEs and infinite horizon BDSDEs
-
Zhang Q., Zhao H.Z. Stationary solutions of SPDEs and infinite horizon BDSDEs. J. Funct. Anal. 2007, 252:171-219.
-
(2007)
J. Funct. Anal.
, vol.252
, pp. 171-219
-
-
Zhang, Q.1
Zhao, H.Z.2
-
33
-
-
74849099581
-
Stationary solutions of SPDEs and infinite horizon BDSDEs with Non-Lipschitz coefficients
-
Zhang Q., Zhao H.Z. Stationary solutions of SPDEs and infinite horizon BDSDEs with Non-Lipschitz coefficients. J. Differential Equations 2010, 248:953-991.
-
(2010)
J. Differential Equations
, vol.248
, pp. 953-991
-
-
Zhang, Q.1
Zhao, H.Z.2
-
34
-
-
58849148902
-
Random periodic solutions of random dynamical systems
-
Zhao H.Z., Zheng Z.H. Random periodic solutions of random dynamical systems. J. Differential Equations 2009, 246:2020-2038.
-
(2009)
J. Differential Equations
, vol.246
, pp. 2020-2038
-
-
Zhao, H.Z.1
Zheng, Z.H.2
|