메뉴 건너뛰기




Volumn 262, Issue 10, 2012, Pages 4377-4422

Random periodic solutions of SPDEs via integral equations and Wiener-Sobolev compact embedding

Author keywords

Coupled forward backward infinite horizon stochastic integral equations; Malliavin derivative; Random periodic solution; Semilinear stochastic partial differential equation; Wiener Sobolev compactness

Indexed keywords


EID: 84862807221     PISSN: 00221236     EISSN: 10960783     Source Type: Journal    
DOI: 10.1016/j.jfa.2012.02.024     Document Type: Article
Times cited : (52)

References (34)
  • 1
    • 0004034319 scopus 로고    scopus 로고
    • Springer-Verlag, Berlin-Heidelberg-New York
    • Arnold L. Random Dynamical Systems 1998, Springer-Verlag, Berlin-Heidelberg-New York.
    • (1998) Random Dynamical Systems
    • Arnold, L.1
  • 2
    • 2442609874 scopus 로고    scopus 로고
    • A relative compactness criterion in Wiener-Sobolev spaces and application to semi-linear stochastic PDEs
    • Bally V., Saussereau B. A relative compactness criterion in Wiener-Sobolev spaces and application to semi-linear stochastic PDEs. J. Funct. Anal. 2004, 210:465-515.
    • (2004) J. Funct. Anal. , vol.210 , pp. 465-515
    • Bally, V.1    Saussereau, B.2
  • 3
    • 10044273281 scopus 로고    scopus 로고
    • Exponentially stable stationary solutions for stochastic evolution equations and their perturbation
    • Caraballo T., Kloeden P.E., Schmalfuss B. Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl. Math. Optim. 2004, 50:183-207.
    • (2004) Appl. Math. Optim. , vol.50 , pp. 183-207
    • Caraballo, T.1    Kloeden, P.E.2    Schmalfuss, B.3
  • 4
    • 78651392362 scopus 로고    scopus 로고
    • Stochastic climate dynamics: Random attractors and time-dependent invariant measures
    • Chekroun M.D., Simonnet E., Ghil M. Stochastic climate dynamics: Random attractors and time-dependent invariant measures. Phys. D 2011, 240:1685-1700.
    • (2011) Phys. D , vol.240 , pp. 1685-1700
    • Chekroun, M.D.1    Simonnet, E.2    Ghil, M.3
  • 5
    • 84862828331 scopus 로고
    • Periodic distributions for linear equations with general additive noise
    • Chojnowska-Michalik A. Periodic distributions for linear equations with general additive noise. Bull. Pol. Acad. Sci. Math. 1990, 38(1-12):23-33.
    • (1990) Bull. Pol. Acad. Sci. Math. , vol.38 , Issue.1-12 , pp. 23-33
    • Chojnowska-Michalik, A.1
  • 6
    • 84862810940 scopus 로고
    • Periodic linear equations with general additive noise in Hilbert spaces
    • Springer, Berlin, Stochastic Systems and Optimization
    • Chojnowska-Michalik A. Periodic linear equations with general additive noise in Hilbert spaces. Lecture Notes in Control and Inform. Sci. 1989, vol. 136:169-183. Springer, Berlin.
    • (1989) Lecture Notes in Control and Inform. Sci. , vol.136 , pp. 169-183
    • Chojnowska-Michalik, A.1
  • 9
    • 0346961357 scopus 로고    scopus 로고
    • Invariant manifolds for stochastic partial differential equations
    • Duan J., Lu K., Schmalfuss B. Invariant manifolds for stochastic partial differential equations. Ann. Probab. 2003, 31:2109-2135.
    • (2003) Ann. Probab. , vol.31 , pp. 2109-2135
    • Duan, J.1    Lu, K.2    Schmalfuss, B.3
  • 10
    • 33748854567 scopus 로고    scopus 로고
    • Smooth stable and unstable manifolds for stochastic evolutionary equations
    • Duan J., Lu K., Schmalfuss B. Smooth stable and unstable manifolds for stochastic evolutionary equations. J. Dynam. Differential Equations 2004, 16:949-972.
    • (2004) J. Dynam. Differential Equations , vol.16 , pp. 949-972
    • Duan, J.1    Lu, K.2    Schmalfuss, B.3
  • 11
    • 0034347507 scopus 로고    scopus 로고
    • Invariant measures for Burgers equation with stochastic forcing
    • E W., Khanin K., Mazel A., Sinai Ya. Invariant measures for Burgers equation with stochastic forcing. Ann. of Math. 2000, 151:877-960.
    • (2000) Ann. of Math. , vol.151 , pp. 877-960
    • E, W.1    Khanin, K.2    Mazel, A.3    Sinai, Y.4
  • 12
    • 79954860741 scopus 로고    scopus 로고
    • Pathwise random periodic solutions of stochastic differential equations
    • Feng C.R., Zhao H.Z., Zhou B. Pathwise random periodic solutions of stochastic differential equations. J. Differential Equations 2011, 251:119-149.
    • (2011) J. Differential Equations , vol.251 , pp. 119-149
    • Feng, C.R.1    Zhao, H.Z.2    Zhou, B.3
  • 13
    • 0001703525 scopus 로고
    • Solutions of parabolic boundary problems existing for all time
    • Fife P.C. Solutions of parabolic boundary problems existing for all time. Arch. Ration. Mech. Anal. 1964, 16:155-186.
    • (1964) Arch. Ration. Mech. Anal. , vol.16 , pp. 155-186
    • Fife, P.C.1
  • 16
    • 67649318244 scopus 로고    scopus 로고
    • Periodicity and Sharkovsky's theorem for random dynamical systems
    • Klünger M. Periodicity and Sharkovsky's theorem for random dynamical systems. Stoch. Dyn. 2001, 1:299-338.
    • (2001) Stoch. Dyn. , vol.1 , pp. 299-338
    • Klünger, M.1
  • 17
    • 0033475636 scopus 로고    scopus 로고
    • Time-periodic solutions of linear parabolic differential equations
    • Lieberman G.M. Time-periodic solutions of linear parabolic differential equations. Comm. Partial Differential Equations 1999, 24:631-663.
    • (1999) Comm. Partial Differential Equations , vol.24 , pp. 631-663
    • Lieberman, G.M.1
  • 18
    • 0035894680 scopus 로고    scopus 로고
    • Time-periodic solutions of quasilinear parabolic differential equations. I. Dirichlet boundary conditions
    • Lieberman G.M. Time-periodic solutions of quasilinear parabolic differential equations. I. Dirichlet boundary conditions. J. Math. Anal. Appl. 2001, 264:617-638.
    • (2001) J. Math. Anal. Appl. , vol.264 , pp. 617-638
    • Lieberman, G.M.1
  • 19
    • 79954815349 scopus 로고    scopus 로고
    • Lyapunov exponents and invariant manifolds for infinite dimensional random dynamical systems in a Banach space
    • Lian Z., Lu K. Lyapunov exponents and invariant manifolds for infinite dimensional random dynamical systems in a Banach space. Mem. Amer. Math. Soc. 2010, 206(967):106.
    • (2010) Mem. Amer. Math. Soc. , vol.206 , Issue.967 , pp. 106
    • Lian, Z.1    Lu, K.2
  • 20
    • 76449109624 scopus 로고    scopus 로고
    • Representation of pathwise stationary solutions of stochastic Burgers equations
    • Liu Y., Zhao H.Z. Representation of pathwise stationary solutions of stochastic Burgers equations. Stoch. Dyn. 2009, 9(4):613-634.
    • (2009) Stoch. Dyn. , vol.9 , Issue.4 , pp. 613-634
    • Liu, Y.1    Zhao, H.Z.2
  • 21
    • 0033201498 scopus 로고    scopus 로고
    • Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity
    • Mattingly J. Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity. Comm. Math. Phys. 1999, 206(2):273-288.
    • (1999) Comm. Math. Phys. , vol.206 , Issue.2 , pp. 273-288
    • Mattingly, J.1
  • 22
    • 34748895787 scopus 로고    scopus 로고
    • The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations
    • Mohammed S.-E.A., Zhang T., Zhao H.Z. The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations. Mem. Amer. Math. Soc. 2008, 196(917):1-105.
    • (2008) Mem. Amer. Math. Soc. , vol.196 , Issue.917 , pp. 1-105
    • Mohammed, S.-E.A.1    Zhang, T.2    Zhao, H.Z.3
  • 24
    • 79954891523 scopus 로고
    • On a Sobolev space of functions of infinite number of variable
    • Peszat S. On a Sobolev space of functions of infinite number of variable. Bull. Pol. Acad. Sci. Math. 1993, 41:55-60.
    • (1993) Bull. Pol. Acad. Sci. Math. , vol.41 , pp. 55-60
    • Peszat, S.1
  • 27
    • 34547290416 scopus 로고    scopus 로고
    • A Concise Course on Stochastic Partial Differential Equations
    • Springer, Berlin
    • Prévôt C., Röckner M. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Math. 2007, vol. 1905. Springer, Berlin.
    • (2007) Lecture Notes in Math. , vol.1905
    • Prévôt, C.1    Röckner, M.2
  • 28
    • 33751098368 scopus 로고
    • Two results concerning asymptotic behaviour of solutions of Burgers equation with force
    • Sinai Ya. Two results concerning asymptotic behaviour of solutions of Burgers equation with force. J. Statist. Phys. 1991, 64:1-12.
    • (1991) J. Statist. Phys. , vol.64 , pp. 1-12
    • Sinai, Y.1
  • 29
    • 0002075314 scopus 로고    scopus 로고
    • Burgers system driven by a periodic stochastic flows
    • Springer, Tokyo
    • Sinai Ya. Burgers system driven by a periodic stochastic flows. ItÔ's Stochastic Calculus and Probability Theory 1996, 347-353. Springer, Tokyo.
    • (1996) ItÔ's Stochastic Calculus and Probability Theory , pp. 347-353
    • Sinai, Y.1
  • 32
    • 34748856144 scopus 로고    scopus 로고
    • Stationary solutions of SPDEs and infinite horizon BDSDEs
    • Zhang Q., Zhao H.Z. Stationary solutions of SPDEs and infinite horizon BDSDEs. J. Funct. Anal. 2007, 252:171-219.
    • (2007) J. Funct. Anal. , vol.252 , pp. 171-219
    • Zhang, Q.1    Zhao, H.Z.2
  • 33
    • 74849099581 scopus 로고    scopus 로고
    • Stationary solutions of SPDEs and infinite horizon BDSDEs with Non-Lipschitz coefficients
    • Zhang Q., Zhao H.Z. Stationary solutions of SPDEs and infinite horizon BDSDEs with Non-Lipschitz coefficients. J. Differential Equations 2010, 248:953-991.
    • (2010) J. Differential Equations , vol.248 , pp. 953-991
    • Zhang, Q.1    Zhao, H.Z.2
  • 34
    • 58849148902 scopus 로고    scopus 로고
    • Random periodic solutions of random dynamical systems
    • Zhao H.Z., Zheng Z.H. Random periodic solutions of random dynamical systems. J. Differential Equations 2009, 246:2020-2038.
    • (2009) J. Differential Equations , vol.246 , pp. 2020-2038
    • Zhao, H.Z.1    Zheng, Z.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.