메뉴 건너뛰기




Volumn 9, Issue 4, 2009, Pages 613-634

Representation of pathwise stationary solutions of Stochastic Burgers' equations

Author keywords

Random dynamical system; Stochastic Burgers' equations; Stochastic stationary solution

Indexed keywords


EID: 76449109624     PISSN: 02194937     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219493709002798     Document Type: Article
Times cited : (24)

References (29)
  • 4
    • 21844482698 scopus 로고
    • Attractors for random dynamical systems
    • H. A. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Relat. Fields 100 (1994) 365-393.
    • (1994) Probab. Th. Relat. Fields , vol.100 , pp. 365-393
    • Crauel, H.A.1    Flandoli, F.2
  • 6
    • 33748854567 scopus 로고    scopus 로고
    • Smooth stable and unstable manifolds for stochastic evolutionary equations
    • J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Diff. Eqns. 16 (2004) 949-972.
    • (2004) J. Dynam. Diff. Eqns. , vol.16 , pp. 949-972
    • Duan, J.1    Lu, K.2    Schmalfuss, B.3
  • 7
    • 0346961357 scopus 로고    scopus 로고
    • Invariant manifolds for stochastic partial differential equations
    • J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab. 31 (2003) 2109-2135.
    • (2003) Ann. Probab , vol.31 , pp. 2109-2135
    • Duan, J.1    Lu, K.2    Schmalfuss, B.3
  • 9
    • 0000049884 scopus 로고
    • Stochastic Burgers, equations
    • G. Da Prato, A. Debussche and R. Temam, Stochastic Burgers, equations, NoDEA 1 (1994) 389-402.
    • (1994) NoDEA , vol.1 , pp. 389-402
    • Da Prato, G.1    Debussche, A.2    Temam, R.3
  • 12
    • 0034347507 scopus 로고    scopus 로고
    • Invariant measures for the Burgers equations with stochastic forcing
    • W. E, K. Khanin, A. Mazel and Ya. Sinai, Invariant measures for the Burgers equations with stochastic forcing, Ann. Math. 151 (2000) 877-960.
    • (2000) Ann. Math. , vol.151 , pp. 877-960
    • Khanin, K.1    Mazel, A.2    Sinai, Y.3
  • 13
    • 0000152394 scopus 로고
    • Dissipativity and invariant measures for stochastic Navier-Stokes equations
    • F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA 1 (1994) 403-426.
    • (1994) NoDEA , vol.1 , pp. 403-426
    • Flandoli, F.1
  • 14
    • 0242546987 scopus 로고    scopus 로고
    • Weak solution and attractors for three-dimensional Navier-Stokes equations with nonregular force
    • F. Flandoli and B. Schmalfuss, Weak solution and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Diff. Eqns. 11 (1999) 355-398.
    • (1999) J. Dynam. Diff. Eqns. , vol.11 , pp. 355-398
    • Flandoli, F.1    Schmalfuss, B.2
  • 15
    • 3042818685 scopus 로고    scopus 로고
    • Generation of one-sided random dynamical systems by stochastic differential equations
    • G. Kager and M. Scheutzow, Generation of one-sided random dynamical systems by stochastic differential equations, Electronic J. Probab. 2 (1997) 1-17.
    • (1997) Electronic J. Probab. , vol.2 , pp. 1-17
    • Kager, G.1    Scheutzow, M.2
  • 18
    • 0033201498 scopus 로고    scopus 로고
    • Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity
    • J. C. Mattingly, Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity, Commum. Math. Phys. 206 (1999) 273-288.
    • (1999) Commum. Math. Phys. , vol.206 , pp. 273-288
    • Mattingly, J.C.1
  • 19
    • 0033455085 scopus 로고    scopus 로고
    • The stable manifold theorem for stochastic differential equations
    • S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for stochastic differential equations, Ann. Probab. 27 (1999) 615-652.
    • (1999) Ann. Probab. , vol.27 , pp. 615-652
    • Mohammed, S.-E.A.1    Scheutzow, M.K.R.2
  • 20
    • 34748895787 scopus 로고    scopus 로고
    • The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations
    • S. Mohammed, T. S. Zhang and H. Z. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc. 196(917) (2008) 1-105.
    • (2008) Mem. Amer. Math. Soc , vol.196 , Issue.917 , pp. 1-105
    • Mohammed, S.1    Zhang, T.S.2    Zhao, H.Z.3
  • 21
    • 44049106756 scopus 로고    scopus 로고
    • Topological fixed point theorems do not hold for random dynamical systems
    • G. Ochs and V. Oseledets, Topological fixed point theorems do not hold for random dynamical systems, J. Dynam. Diff. Eqns. 11 (1999) 583-593.
    • (1999) J. Dynam. Diff. Eqns. , vol.11 , pp. 583-593
    • Ochs, G.1    Oseledets, V.2
  • 23
    • 0002075314 scopus 로고    scopus 로고
    • Burgers system driven by a periodic stochastic flow
    • Springer
    • Ya. Sinai, Burgers system driven by a periodic stochastic flow, in Ito,s Stochastic Calculus and Probability Theory (Springer, 1996), pp. 347-353.
    • (1996) Ito,s Stochastic Calculus and Probability Theory , pp. 347-353
    • Sinai, Ya.1
  • 24
    • 33751098368 scopus 로고
    • Two results concerning asymptotic behaviour of solutions of the Burgers equation with force
    • Ya. Sinai, Two results concerning asymptotic behaviour of solutions of the Burgers equation with force, J. Statist. Phys. 64 (1991) 1-12.
    • (1991) J. Statist. Phys. , vol.64 , pp. 1-12
    • Sinai, Ya.1
  • 28
    • 34748856144 scopus 로고    scopus 로고
    • Stationary solution of SPDEs and infinite horizon BDSDEs
    • Q. Zhang and H. Z. Zhao, Stationary solution of SPDEs and infinite horizon BDSDEs, J. Funct. Anal. 252 (2007) 171-219.
    • (2007) J. Funct. Anal. , vol.252 , pp. 171-219
    • Zhang, Q.1    Zhao, H.Z.2
  • 29
    • 58849148902 scopus 로고    scopus 로고
    • Random periodic solution of random dynamical systems
    • H. Z. Zhao and Z. H. Zheng, Random periodic solution of random dynamical systems, J. Diff. Eqns. 246 (2009) 2020-2038.
    • (2009) J. Diff. Eqns. , vol.246 , pp. 2020-2038
    • Zhao, H.Z.1    Zheng, Z.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.