-
6
-
-
33748854567
-
Smooth stable and unstable manifolds for stochastic evolutionary equations
-
J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Diff. Eqns. 16 (2004) 949-972.
-
(2004)
J. Dynam. Diff. Eqns.
, vol.16
, pp. 949-972
-
-
Duan, J.1
Lu, K.2
Schmalfuss, B.3
-
7
-
-
0346961357
-
Invariant manifolds for stochastic partial differential equations
-
J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab. 31 (2003) 2109-2135.
-
(2003)
Ann. Probab
, vol.31
, pp. 2109-2135
-
-
Duan, J.1
Lu, K.2
Schmalfuss, B.3
-
9
-
-
0000049884
-
Stochastic Burgers, equations
-
G. Da Prato, A. Debussche and R. Temam, Stochastic Burgers, equations, NoDEA 1 (1994) 389-402.
-
(1994)
NoDEA
, vol.1
, pp. 389-402
-
-
Da Prato, G.1
Debussche, A.2
Temam, R.3
-
12
-
-
0034347507
-
Invariant measures for the Burgers equations with stochastic forcing
-
W. E, K. Khanin, A. Mazel and Ya. Sinai, Invariant measures for the Burgers equations with stochastic forcing, Ann. Math. 151 (2000) 877-960.
-
(2000)
Ann. Math.
, vol.151
, pp. 877-960
-
-
Khanin, K.1
Mazel, A.2
Sinai, Y.3
-
13
-
-
0000152394
-
Dissipativity and invariant measures for stochastic Navier-Stokes equations
-
F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA 1 (1994) 403-426.
-
(1994)
NoDEA
, vol.1
, pp. 403-426
-
-
Flandoli, F.1
-
14
-
-
0242546987
-
Weak solution and attractors for three-dimensional Navier-Stokes equations with nonregular force
-
F. Flandoli and B. Schmalfuss, Weak solution and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Diff. Eqns. 11 (1999) 355-398.
-
(1999)
J. Dynam. Diff. Eqns.
, vol.11
, pp. 355-398
-
-
Flandoli, F.1
Schmalfuss, B.2
-
15
-
-
3042818685
-
Generation of one-sided random dynamical systems by stochastic differential equations
-
G. Kager and M. Scheutzow, Generation of one-sided random dynamical systems by stochastic differential equations, Electronic J. Probab. 2 (1997) 1-17.
-
(1997)
Electronic J. Probab.
, vol.2
, pp. 1-17
-
-
Kager, G.1
Scheutzow, M.2
-
16
-
-
0003223550
-
Linear and quasi- linear equations of parabolic type
-
Amer. Math. Soc
-
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural,ceva, Linear and Quasi- Linear Equations of Parabolic Type, Translation of Mathematical Monographs, Vol.23 (Amer. Math. Soc., 1968).
-
(1968)
Translation of Mathematical Monographs
, vol.23
-
-
Ladyzenskaja, O.A.1
Solonnikov, V.A.2
Uralceva, N.N.3
-
18
-
-
0033201498
-
Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity
-
J. C. Mattingly, Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity, Commum. Math. Phys. 206 (1999) 273-288.
-
(1999)
Commum. Math. Phys.
, vol.206
, pp. 273-288
-
-
Mattingly, J.C.1
-
19
-
-
0033455085
-
The stable manifold theorem for stochastic differential equations
-
S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for stochastic differential equations, Ann. Probab. 27 (1999) 615-652.
-
(1999)
Ann. Probab.
, vol.27
, pp. 615-652
-
-
Mohammed, S.-E.A.1
Scheutzow, M.K.R.2
-
20
-
-
34748895787
-
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations
-
S. Mohammed, T. S. Zhang and H. Z. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc. 196(917) (2008) 1-105.
-
(2008)
Mem. Amer. Math. Soc
, vol.196
, Issue.917
, pp. 1-105
-
-
Mohammed, S.1
Zhang, T.S.2
Zhao, H.Z.3
-
21
-
-
44049106756
-
Topological fixed point theorems do not hold for random dynamical systems
-
G. Ochs and V. Oseledets, Topological fixed point theorems do not hold for random dynamical systems, J. Dynam. Diff. Eqns. 11 (1999) 583-593.
-
(1999)
J. Dynam. Diff. Eqns.
, vol.11
, pp. 583-593
-
-
Ochs, G.1
Oseledets, V.2
-
23
-
-
0002075314
-
Burgers system driven by a periodic stochastic flow
-
Springer
-
Ya. Sinai, Burgers system driven by a periodic stochastic flow, in Ito,s Stochastic Calculus and Probability Theory (Springer, 1996), pp. 347-353.
-
(1996)
Ito,s Stochastic Calculus and Probability Theory
, pp. 347-353
-
-
Sinai, Ya.1
-
24
-
-
33751098368
-
Two results concerning asymptotic behaviour of solutions of the Burgers equation with force
-
Ya. Sinai, Two results concerning asymptotic behaviour of solutions of the Burgers equation with force, J. Statist. Phys. 64 (1991) 1-12.
-
(1991)
J. Statist. Phys.
, vol.64
, pp. 1-12
-
-
Sinai, Ya.1
-
28
-
-
34748856144
-
Stationary solution of SPDEs and infinite horizon BDSDEs
-
Q. Zhang and H. Z. Zhao, Stationary solution of SPDEs and infinite horizon BDSDEs, J. Funct. Anal. 252 (2007) 171-219.
-
(2007)
J. Funct. Anal.
, vol.252
, pp. 171-219
-
-
Zhang, Q.1
Zhao, H.Z.2
-
29
-
-
58849148902
-
Random periodic solution of random dynamical systems
-
H. Z. Zhao and Z. H. Zheng, Random periodic solution of random dynamical systems, J. Diff. Eqns. 246 (2009) 2020-2038.
-
(2009)
J. Diff. Eqns.
, vol.246
, pp. 2020-2038
-
-
Zhao, H.Z.1
Zheng, Z.H.2
|