메뉴 건너뛰기




Volumn 107, Issue , 2012, Pages 119-140

Model selection and estimation in the matrix normal graphical model

Author keywords

Gaussian graphical model; Gene networks; High dimensional data; L 1 penalized likelihood; Matrix normal distribution; Sparsistency

Indexed keywords


EID: 84862805433     PISSN: 0047259X     EISSN: 10957243     Source Type: Journal    
DOI: 10.1016/j.jmva.2012.01.005     Document Type: Article
Times cited : (82)

References (42)
  • 1
    • 79958698540 scopus 로고    scopus 로고
    • Comment on article by Hoff
    • Allen G. Comment on article by Hoff. Bayesian Analysis 2011, 6(2):197-202.
    • (2011) Bayesian Analysis , vol.6 , Issue.2 , pp. 197-202
    • Allen, G.1
  • 2
    • 79954998593 scopus 로고    scopus 로고
    • Transposable regularized covariance models with an application to missing data imputation
    • Allen G., Tibshirani R. Transposable regularized covariance models with an application to missing data imputation. The Annals of Applied Statistics 2010, 4(2):764-790.
    • (2010) The Annals of Applied Statistics , vol.4 , Issue.2 , pp. 764-790
    • Allen, G.1    Tibshirani, R.2
  • 3
    • 84862818754 scopus 로고    scopus 로고
    • Inference with transposable data: modeling the effects of row and column correlations
    • Series B (Theory & Methods) (in press).
    • G. Allen, R. Tibshirani, Inference with transposable data: modeling the effects of row and column correlations, Journal of the Royal Statistical Society, Series B (Theory & Methods) (2011) (in press).
    • (2011) Journal of the Royal Statistical Society
    • Allen, G.1    Tibshirani, R.2
  • 4
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee O., Ghaoui L.E., d'Aspremont A. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research 2008, 9:485-516.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    Ghaoui, L.E.2    d'Aspremont, A.3
  • 5
    • 41549106844 scopus 로고    scopus 로고
    • Regularized estimation of large covariance matrices
    • Bickel P., Levina E. Regularized estimation of large covariance matrices. Annals of Statistics 2008, 36(1):199-227.
    • (2008) Annals of Statistics , vol.36 , Issue.1 , pp. 199-227
    • Bickel, P.1    Levina, E.2
  • 7
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: statistical estimation when p is much larger than n
    • Candes E., Tao T. The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics 2007, 35:2313-2351.
    • (2007) Annals of Statistics , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 10
    • 0000043041 scopus 로고
    • Some matrix-variate distribution theory: notational considerations and a Bayesian application
    • Dawid A. Some matrix-variate distribution theory: notational considerations and a Bayesian application. Biometrika 1981, 68:265-274.
    • (1981) Biometrika , vol.68 , pp. 265-274
    • Dawid, A.1
  • 12
    • 77949509397 scopus 로고    scopus 로고
    • Are a set of microarrays independent of each other?
    • Efron B. Are a set of microarrays independent of each other?. The Annals of Applied Statistics 2009, 13(3):922-942.
    • (2009) The Annals of Applied Statistics , vol.13 , Issue.3 , pp. 922-942
    • Efron, B.1
  • 13
    • 73949117731 scopus 로고    scopus 로고
    • Network exploration via the adaptive lasso and scad penalties
    • Fan J., Feng Y., Wu Y. Network exploration via the adaptive lasso and scad penalties. The Annals of Applied Statistics 2009, 3:521-541.
    • (2009) The Annals of Applied Statistics , vol.3 , pp. 521-541
    • Fan, J.1    Feng, Y.2    Wu, Y.3
  • 14
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J., Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 2001, 96:1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 16
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J., Hastie T., Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9:432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 19
    • 79958754282 scopus 로고    scopus 로고
    • Separable covariance arrays via the Tucker product, with applications to multivariate relational data
    • Hoff P. Separable covariance arrays via the Tucker product, with applications to multivariate relational data. Bayesian Analysis 2011, 6(2):179-196.
    • (2011) Bayesian Analysis , vol.6 , Issue.2 , pp. 179-196
    • Hoff, P.1
  • 20
    • 34548443831 scopus 로고    scopus 로고
    • Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition
    • Holmes K., Roberts O., Thomas A., Cross M. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular Signalling 2007, 19:2003-2012.
    • (2007) Cellular Signalling , vol.19 , pp. 2003-2012
    • Holmes, K.1    Roberts, O.2    Thomas, A.3    Cross, M.4
  • 22
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrices estimation
    • Lam C., Fan J. Sparsistency and rates of convergence in large covariance matrices estimation. The Annals of Statistics 2009, 37:4254-4278.
    • (2009) The Annals of Statistics , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 24
  • 25
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
    • Li H., Gui J. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics 2006, 7:302-317.
    • (2006) Biostatistics , vol.7 , pp. 302-317
    • Li, H.1    Gui, J.2
  • 26
    • 0002572881 scopus 로고
    • Spatial-temporal analysis of multivariate environmental monitoring data
    • Mardia K.V., Goodall C. Spatial-temporal analysis of multivariate environmental monitoring data. Multivariate Environmental Statistics 1993, 6:347-385.
    • (1993) Multivariate Environmental Statistics , vol.6 , pp. 347-385
    • Mardia, K.V.1    Goodall, C.2
  • 27
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen N., Bühlmann P. High-dimensional graphs and variable selection with the lasso. Annals of Statistics 2006, 34:1436-1462.
    • (2006) Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 29
    • 84988467181 scopus 로고    scopus 로고
    • Detecting column dependence when rows are correlated and estimating the strength of the row correlation
    • Muralidharan O. Detecting column dependence when rows are correlated and estimating the strength of the row correlation. Electronic Journal of Statistics 2010, 4:1527-1546.
    • (2010) Electronic Journal of Statistics , vol.4 , pp. 1527-1546
    • Muralidharan, O.1
  • 32
    • 66549106409 scopus 로고    scopus 로고
    • A statistical framework to infer functional gene associations from multiple biologically interrelated microarray experiments
    • Teng S., Huang H. A statistical framework to infer functional gene associations from multiple biologically interrelated microarray experiments. Journal of the American Statistical Association 2009, 104:465-473.
    • (2009) Journal of the American Statistical Association , vol.104 , pp. 465-473
    • Teng, S.1    Huang, H.2
  • 34
    • 70350346915 scopus 로고
    • Multivariate analysis of variance of repeated measurements
    • Timm N.H. Multivariate analysis of variance of repeated measurements. Handbook of Statistics 1980, 1:41-87.
    • (1980) Handbook of Statistics , vol.1 , pp. 41-87
    • Timm, N.H.1
  • 35
    • 0000666371 scopus 로고
    • The extension of factor analysis to three-dimensional matrices
    • Holt, Rinehart and Winston, New York, H. Gulliksen, N. Frederiksen (Eds.)
    • Tucker L.R. The extension of factor analysis to three-dimensional matrices. Contributions to Mathematical Psychology 1964, Holt, Rinehart and Winston, New York. H. Gulliksen, N. Frederiksen (Eds.).
    • (1964) Contributions to Mathematical Psychology
    • Tucker, L.R.1
  • 36
    • 71249101206 scopus 로고    scopus 로고
    • Bayesian analysis of matrix normal graphical models
    • Wang H., West M. Bayesian analysis of matrix normal graphical models. Biometrika 2009, 96:821-834.
    • (2009) Biometrika , vol.96 , pp. 821-834
    • Wang, H.1    West, M.2
  • 38
    • 77956916683 scopus 로고    scopus 로고
    • Sparse inverse covariance matrix estimation via linear programming
    • Yuan M. Sparse inverse covariance matrix estimation via linear programming. Journal of Machine Learning Research 2010, 11:2261-2286.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2261-2286
    • Yuan, M.1
  • 39
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan M., Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika 2007, 94:19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 40
    • 37249049422 scopus 로고    scopus 로고
    • Agemap: a gene expression database for aging in mice
    • Zahn J.M., Poosala S., Owen A., Ingram D.K., Lustig A., et al. Agemap: a gene expression database for aging in mice. PLoS Genetics 2007, 3(11):2326-2337.
    • (2007) PLoS Genetics , vol.3 , Issue.11 , pp. 2326-2337
    • Zahn, J.M.1    Poosala, S.2    Owen, A.3    Ingram, D.K.4    Lustig, A.5
  • 41
    • 85161985386 scopus 로고    scopus 로고
    • Learning multiple tasks with a sparse matrix-normal penalty
    • J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. Zemel, A. Culotta (Eds.)
    • Zhang Y., Schneider J. Learning multiple tasks with a sparse matrix-normal penalty. Advances in Neural Information Processing Systems 2010, vol. 23:2550-2558. J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. Zemel, A. Culotta (Eds.).
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 2550-2558
    • Zhang, Y.1    Schneider, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.