-
2
-
-
36849079891
-
Modeling relationships at multiple scales to imporve accuracy of large recommender systems
-
In, San Jose
-
Bell, R. M., Koren, Y. and Volinsky, C. (2007). Modeling relationships at multiple scales to imporve accuracy of large recommender systems. In Proceedings of KDD Cup and Workshop 95-104. San Jose.
-
(2007)
Proceedings of KDD Cup and Workshop
, pp. 95-104
-
-
Bell, R.M.1
Koren, Y.2
Volinsky, C.3
-
4
-
-
0037469122
-
Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
-
Biernacki, C., Celeux, G. and Govaert, G. (2003). Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Statist. Data Anal. 41 561-575.
-
(2003)
Comput. Statist. Data Anal
, vol.41
, pp. 561-575
-
-
Biernacki, C.1
Celeux, G.2
Govaert, G.3
-
6
-
-
71049116435
-
Exact matrix completion via convex optimization
-
Candes, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization. Found. Comput. Math. 9 717-772.
-
(2009)
Found. Comput. Math
, vol.9
, pp. 717-772
-
-
Candes, E.J.1
Recht, B.2
-
7
-
-
0030376179
-
Stochastic versions of the EM algorithm: An experimental study in the mixture case
-
Celeux, G., Chauveau, D. and Diebolt, J. (1996). Stochastic versions of the EM algorithm: An experimental study in the mixture case. J. Stat. Comput. Simul. 55 287-314.
-
(1996)
J. Stat. Comput. Simul
, vol.55
, pp. 287-314
-
-
Celeux, G.1
Chauveau, D.2
Diebolt, J.3
-
8
-
-
0033236298
-
The MLE algorithm for the matrix normal distribution
-
Dutilleul, P. (1999). The MLE algorithm for the matrix normal distribution. J. Stat. Comput. Simul. 64 105-123.
-
(1999)
J. Stat. Comput. Simul
, vol.64
, pp. 105-123
-
-
Dutilleul, P.1
-
9
-
-
77949509397
-
Are a set of microarrays independent of each other?
-
Efron, B. (2009). Are a set of microarrays independent of each other? Ann. Appl. Statist. 3 922-942.
-
(2009)
Ann. Appl. Statist
, vol.3
, pp. 922-942
-
-
Efron, B.1
-
11
-
-
1542784498
-
Variable selection via penalized likelihood and its oracle properties
-
Fan, J. and Li, R. (2001). Variable selection via penalized likelihood and its oracle properties. J. Amer. Stat. Assoc. 96 1348-1360.
-
(2001)
J. Amer. Stat. Assoc
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
12
-
-
45849134070
-
Sparse inverse covariance estimation with the lasso
-
Friedman, J., Hastie, T. and Tibshirani, R. (2007). Sparse inverse covariance estimation with the lasso. Biostatistics 9 432-441.
-
(2007)
Biostatistics
, vol.9
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
13
-
-
0000357775
-
On use of the EM algorithm for penalized likelihood estimation
-
Green, P. J. (1990). On use of the EM algorithm for penalized likelihood estimation. J. Roy. Statist. Soc. Ser. B 52 443-452.
-
(1990)
J. Roy. Statist. Soc. Ser. B
, vol.52
, pp. 443-452
-
-
Green, P.J.1
-
15
-
-
13444304426
-
Missing value estimation for DNA microarray gene expression data: Local least squares imputation
-
Kim, H., Golub, G. and Park, H. (2005). Missing value estimation for DNA microarray gene expression data: Local least squares imputation. Bioinformatics 21 187-198.
-
(2005)
Bioinformatics
, vol.21
, pp. 187-198
-
-
Kim, H.1
Golub, G.2
Park, H.3
-
16
-
-
33847350805
-
Component selection and smoothing in multivariate nonparametric regression
-
Lin, Y. and Zhang, H. H. (2006). Component selection and smoothing in multivariate nonparametric regression. Ann. Statist. 34 2272-2297.
-
(2006)
Ann. Statist
, vol.34
, pp. 2272-2297
-
-
Lin, Y.1
Zhang, H.H.2
-
18
-
-
0000251971
-
Maximum likelihood estimation via the ECM algorithm: A general framework
-
Meng, X.-L. and Rubin, D. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80 267-278.
-
(1993)
Biometrika
, vol.80
, pp. 267-278
-
-
Meng, X.-L.1
Rubin, D.2
-
19
-
-
62349119614
-
Sparse permutation invariant covariance estimation
-
Rothman, A. J., Bickel, P. J., Levina, E. and Zhu, J. (2008). Sparse permutation invariant covariance estimation. Electron. J. Stat. 2 494-515.
-
(2008)
Electron. J. Stat
, vol.2
, pp. 494-515
-
-
Rothman, A.J.1
Bickel, P.J.2
Levina, E.3
Zhu, J.4
-
20
-
-
0030539070
-
Multiple imputation after 18+ years
-
Rubin, D. B. (1996). Multiple imputation after 18+ years. J. Amer. Statist. Assoc. 91 473-489.
-
(1996)
J. Amer. Statist. Assoc
, vol.91
, pp. 473-489
-
-
Rubin, D.B.1
-
22
-
-
0034960264
-
Missing value estimation methods for DNA microarrays
-
Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R. B. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics 17 520-525.
-
(2001)
Bioinformatics
, vol.17
, pp. 520-525
-
-
Troyanskaya, O.1
Cantor, M.2
Sherlock, G.3
Brown, P.4
Hastie, T.5
Tibshirani, R.6
Botstein, D.7
Altman, R.B.8
-
23
-
-
66849143711
-
Covariance-regularized regression and classification for high-dimensional problems
-
Witten, D. M. and Tibshirani, R. (2009). Covariance-regularized regression and classification for high-dimensional problems. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 615-636.
-
(2009)
J. R. Stat. Soc. Ser. B Stat. Methodol
, vol.71
, pp. 615-636
-
-
Witten, D.M.1
Tibshirani, R.2
-
24
-
-
84864069510
-
Stochastic relational models for discriminative link prediction
-
Yu, K., Chu, W., Yu, S., Tresp, V. and Xu, Z. (2007). Stochastic relational models for discriminative link prediction. Advances in Neural Information Processing Systems 19 1553-1560.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 1553-1560
-
-
Yu, K.1
Chu, W.2
Yu, S.3
Tresp, V.4
Xu, Z.5
-
25
-
-
71149088913
-
Large-scale collaborative prediction using a nonparametric random effects model
-
(A. P. Danyluk, L. Bottou, M. L. Littman, eds.). ACM International Conference Proceeding Series, In, 382. ACM Press, New York
-
Yu, K., Lafferty, J. D., Zhu, S. and Gong, Y. (2009). Large-scale collaborative prediction using a nonparametric random effects model. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009 (A. P. Danyluk, L. Bottou, M. L. Littman, eds.). ACM International Conference Proceeding Series 382. ACM Press, New York.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009
-
-
Yu, K.1
Lafferty, J.D.2
Zhu, S.3
Gong, Y.4
-
26
-
-
84868967525
-
Gene expression profiling predicts survival in conventional renal cell carcinoma
-
Zhao, H., Tibshirani, R. and Brooks, J. (2005). Gene expression profiling predicts survival in conventional renal cell carcinoma. PLOS Medicine 3511-533.
-
(2005)
PLOS Medicine
, pp. 3511-3533
-
-
Zhao, H.1
Tibshirani, R.2
Brooks, J.3
|