메뉴 건너뛰기




Volumn 86, Issue , 2012, Pages 59-74

Nonlinear time series modeling and prediction using functional weights wavelet neural network-based state-dependent AR model

Author keywords

Autoregression; Functional weights wavelet network; Modeling; Nonlinear time series; Optimization; Prediction; Wavelet networks

Indexed keywords

AR MODELS; AUTO-REGRESSIVE; AUTOREGRESSION; FREQUENCY SPACES; FUNCTIONAL APPROXIMATION; LEARNING APPROACH; LEAST SQUARE METHODS; LINEAR SUBSPACE; MODEL PARAMETERS; NETWORK-BASED; NON-LINEAR PARAMETERS; NONLINEAR TIME SERIES; NONLINEAR TIME SERIES MODELING; OPTIMIZATION PROCESS; PARAMETER SEARCH SPACE; PREDICTION PROBLEM; STATE-DEPENDENT; WAVELET NETWORK; WAVELET NEURAL NETWORKS;

EID: 84862802588     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.01.010     Document Type: Article
Times cited : (46)

References (50)
  • 1
    • 21244438033 scopus 로고    scopus 로고
    • Time series forecasting using flexible neural tree model
    • Chen Y., Yang B., Dong J., Abraham A. Time series forecasting using flexible neural tree model. Inf. Sci. 2005, 174(3-4):219-235.
    • (2005) Inf. Sci. , vol.174 , Issue.3-4 , pp. 219-235
    • Chen, Y.1    Yang, B.2    Dong, J.3    Abraham, A.4
  • 2
    • 33750535466 scopus 로고    scopus 로고
    • Predicting chaotic time series using neural and neurofuzzy models: a comparative study
    • Gholipour A., Araabi B.N., Lucas C. Predicting chaotic time series using neural and neurofuzzy models: a comparative study. Neural Process. Lett. 2006, 24:217-239.
    • (2006) Neural Process. Lett. , vol.24 , pp. 217-239
    • Gholipour, A.1    Araabi, B.N.2    Lucas, C.3
  • 3
    • 0007835971 scopus 로고    scopus 로고
    • Time series prediction with multilayer perceptron, FIR and Elman neural networks
    • In: Proceedings of the World Congress on Neural Networks
    • T. Koskela, M. Lehtokangas, J. Saarinen, K. Kaski, Time series prediction with multilayer perceptron, FIR and Elman neural networks, in: Proceedings of the World Congress on Neural Networks, 1996, pp. 491-496.
    • (1996) , pp. 491-496
    • Koskela, T.1    Lehtokangas, M.2    Saarinen, J.3    Kaski, K.4
  • 4
    • 38049039845 scopus 로고    scopus 로고
    • Chaotic time series prediction based on evolving recurrent neural networks
    • In: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong
    • Q. Ma, Q. Zheng, H. Peng, T. Zhong, L. Xu, Chaotic time series prediction based on evolving recurrent neural networks, in: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 2007.
    • (2007)
    • Ma, Q.1    Zheng, Q.2    Peng, H.3    Zhong, T.4    Xu, L.5
  • 5
    • 0036131610 scopus 로고    scopus 로고
    • Time series analysis using normalized PG-RBF network with regression weights
    • Rojas I., Pomares H., Bernier J.L., Ortega J., et al. Time series analysis using normalized PG-RBF network with regression weights. Neurocomputing 2002, 42:267-285.
    • (2002) Neurocomputing , vol.42 , pp. 267-285
    • Rojas, I.1    Pomares, H.2    Bernier, J.L.3    Ortega, J.4
  • 6
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • Cho K.B., Wang B.H. Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction. Fuzzy Sets Syst. 1996, 83:325-329.
    • (1996) Fuzzy Sets Syst. , vol.83 , pp. 325-329
    • Cho, K.B.1    Wang, B.H.2
  • 7
    • 40649090413 scopus 로고    scopus 로고
    • Time series prediction using evolving radial basis function networks with new encoding scheme
    • Du H., Zhang N. Time series prediction using evolving radial basis function networks with new encoding scheme. Neurocomputing 2008, 71:1388-1400.
    • (2008) Neurocomputing , vol.71 , pp. 1388-1400
    • Du, H.1    Zhang, N.2
  • 8
    • 33748424239 scopus 로고    scopus 로고
    • The effect of different basis functions on a radial basis function network for time series prediction: a comparative study
    • Harpham C., Dawson C.W. The effect of different basis functions on a radial basis function network for time series prediction: a comparative study. Neurocomputing 2006, 69:2161-2170.
    • (2006) Neurocomputing , vol.69 , pp. 2161-2170
    • Harpham, C.1    Dawson, C.W.2
  • 9
    • 39149121480 scopus 로고    scopus 로고
    • Hybridization of intelligent techniques and ARIMA models for time series prediction
    • Valenzuela O., Rojas I., Rojas F., Pomares H., et al. Hybridization of intelligent techniques and ARIMA models for time series prediction. Fuzzy Sets Syst. 2008, 159:821-845.
    • (2008) Fuzzy Sets Syst. , vol.159 , pp. 821-845
    • Valenzuela, O.1    Rojas, I.2    Rojas, F.3    Pomares, H.4
  • 10
    • 0033153934 scopus 로고    scopus 로고
    • Nonlinear time series modeling with the radial basis function-based state-dependent autoregressive model
    • Shi Z., Tamura Y., Ozaki T. Nonlinear time series modeling with the radial basis function-based state-dependent autoregressive model. Int. J. Syst. Sci. 1999, 30(7):717-727.
    • (1999) Int. J. Syst. Sci. , vol.30 , Issue.7 , pp. 717-727
    • Shi, Z.1    Tamura, Y.2    Ozaki, T.3
  • 11
    • 77955311883 scopus 로고    scopus 로고
    • Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks
    • Ardalani-Farsa M., Zolfaghari S. Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks. Neurocomputing 2010, 73:2540-2553.
    • (2010) Neurocomputing , vol.73 , pp. 2540-2553
    • Ardalani-Farsa, M.1    Zolfaghari, S.2
  • 12
    • 77956393917 scopus 로고    scopus 로고
    • A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling
    • Gan Min, Peng Hui, Peng Xiaoyan, Chen Xiaohong, Inoussa Garba A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling. Inf. Sci. 2010, 180:4370-4383.
    • (2010) Inf. Sci. , vol.180 , pp. 4370-4383
    • Gan, M.1    Peng, H.2    Peng, X.3    Chen, X.4    Inoussa, G.5
  • 14
    • 0002907696 scopus 로고
    • The evaluation of fuzzy model derived from experimental data
    • Tong R.M. The evaluation of fuzzy model derived from experimental data. Fuzzy Sets Syst. 1980, 4:1-12.
    • (1980) Fuzzy Sets Syst. , vol.4 , pp. 1-12
    • Tong, R.M.1
  • 15
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational systems
    • Pedrycz W. An identification algorithm in fuzzy relational systems. Fuzzy Sets Syst. 1984, 13(2):153-167.
    • (1984) Fuzzy Sets Syst. , vol.13 , Issue.2 , pp. 153-167
    • Pedrycz, W.1
  • 16
    • 0023209327 scopus 로고
    • Fuzzy model identification and self-learning for dynamic systems
    • Xu C., Lu Y. Fuzzy model identification and self-learning for dynamic systems. IEEE Trans. Syst. Man Cybern. 1987, SMC-17(4):683-689.
    • (1987) IEEE Trans. Syst. Man Cybern. , vol.SMC-17 , Issue.4 , pp. 683-689
    • Xu, C.1    Lu, Y.2
  • 17
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling
    • Sugeno M., Yasukawa T. A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1993, 1(1):7-31.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 18
    • 0031272838 scopus 로고    scopus 로고
    • Forecasting time series with genetic fuzzy predictor ensembles
    • Kim D., Kim C. Forecasting time series with genetic fuzzy predictor ensembles. IEEE Trans. Fuzzy Syst. 1997, 5:523-535.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , pp. 523-535
    • Kim, D.1    Kim, C.2
  • 19
    • 33749382626 scopus 로고    scopus 로고
    • Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme
    • Kim M.S., Kim C.H., Lee J.J. Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme. IEEE Trans. Syst. Man Cybern. 2006, 36(5):1006-1023.
    • (2006) IEEE Trans. Syst. Man Cybern. , vol.36 , Issue.5 , pp. 1006-1023
    • Kim, M.S.1    Kim, C.H.2    Lee, J.J.3
  • 21
    • 0029323249 scopus 로고
    • Constructing fuzzy model by self-organizing counterpropagation network
    • Nie J. Constructing fuzzy model by self-organizing counterpropagation network. IEEE Trans. Syst. Man Cybern. 1995, 25(6):963-970.
    • (1995) IEEE Trans. Syst. Man Cybern. , vol.25 , Issue.6 , pp. 963-970
    • Nie, J.1
  • 22
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • Lin Y., Cunningham G.A. A new approach to fuzzy-neural system modeling. IEEE Trans. Fuzzy Syst. 1995, 3(2):190-197.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 190-197
    • Lin, Y.1    Cunningham, G.A.2
  • 23
    • 0001379053 scopus 로고
    • Neural network adaptive wavelets for signal representation and classification
    • Szu H.H., Teller B., Kadambe S. Neural network adaptive wavelets for signal representation and classification. Opt. Eng. 1992, 31(9):1907-1915.
    • (1992) Opt. Eng. , vol.31 , Issue.9 , pp. 1907-1915
    • Szu, H.H.1    Teller, B.2    Kadambe, S.3
  • 24
    • 0027151141 scopus 로고
    • Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations
    • Pati Y.C., Krishnaprasad P.S. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations. IEEE Trans. Neural Networks 1993, 4(1):73-85.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.1 , pp. 73-85
    • Pati, Y.C.1    Krishnaprasad, P.S.2
  • 25
    • 0008844463 scopus 로고    scopus 로고
    • Wavelet neural networks and multiresolution analysis with applications to process systems engineering
    • Ph.D. Thesis, The University of Sydney, Australia
    • A.A. Safavi, Wavelet neural networks and multiresolution analysis with applications to process systems engineering, Ph.D. Thesis, The University of Sydney, Australia, 1996.
    • (1996)
    • Safavi, A.A.1
  • 26
    • 0031170304 scopus 로고    scopus 로고
    • Application of wavelet-based neural networks to the modelling and optimisation of an experimental distillation column engineering applications
    • Safavi A.A., Romagnoli J.A. Application of wavelet-based neural networks to the modelling and optimisation of an experimental distillation column engineering applications. Artif. lntell. 1997, 10(3):301-313.
    • (1997) Artif. lntell. , vol.10 , Issue.3 , pp. 301-313
    • Safavi, A.A.1    Romagnoli, J.A.2
  • 28
    • 0027147212 scopus 로고
    • Wave-net: a multiresolution, hierarchical neural network with localised learning
    • Bakshi.B.R., Stephanopoulos G. Wave-net: a multiresolution, hierarchical neural network with localised learning. A.I.Ch.E. J. 1993, 39(1):7-81.
    • (1993) A.I.Ch.E. J. , vol.39 , Issue.1 , pp. 7-81
    • Bakshi, B.R.1    Stephanopoulos, G.2
  • 29
    • 0027841749 scopus 로고
    • Multilayer perceptron based decision feedback equalizers for channels with intersymbol interference
    • Meyer M., Pfeiffer G. Multilayer perceptron based decision feedback equalizers for channels with intersymbol interference. IEE Proc.-I 1993, 140:420-424.
    • (1993) IEE Proc.-I , vol.140 , pp. 420-424
    • Meyer, M.1    Pfeiffer, G.2
  • 30
    • 29444444293 scopus 로고    scopus 로고
    • Time series prediction using a local linear wavelet neural network
    • Chen Y., Yang B., Dong J. Time series prediction using a local linear wavelet neural network. Neurocomputing 2006, 69:449-465.
    • (2006) Neurocomputing , vol.69 , pp. 449-465
    • Chen, Y.1    Yang, B.2    Dong, J.3
  • 31
    • 77649238806 scopus 로고    scopus 로고
    • Composite function wavelet neural networks with extreme learning machine
    • Cao J., Lin Z., Huang G.-B. Composite function wavelet neural networks with extreme learning machine. Neurocomputing 2010, 73(7-9):1405-1416.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1405-1416
    • Cao, J.1    Lin, Z.2    Huang, G.-B.3
  • 32
    • 79956125371 scopus 로고    scopus 로고
    • Composite function wavelet neural networks with differential evolution and extreme learning machine
    • Cao J., Lin Z., Huang G.-B. Composite function wavelet neural networks with differential evolution and extreme learning machine. Neural Process. Lett. 2011, 33:251-265.
    • (2011) Neural Process. Lett. , vol.33 , pp. 251-265
    • Cao, J.1    Lin, Z.2    Huang, G.-B.3
  • 33
    • 84957868979 scopus 로고    scopus 로고
    • Wavelet packet multi-layer perceptron for chaotic time series prediction: effects of weight initialization
    • Teo K., Wang L., Lin Z. Wavelet packet multi-layer perceptron for chaotic time series prediction: effects of weight initialization. Comput. Sci. 2074 2001, 310-317.
    • (2001) Comput. Sci. 2074 , pp. 310-317
    • Teo, K.1    Wang, L.2    Lin, Z.3
  • 34
    • 27944498559 scopus 로고    scopus 로고
    • The wavelet-NARMAX representation: a hybrid model structure combining polynomial models with multiresolution wavelet decompositions
    • Billings S.A., Wei H.L. The wavelet-NARMAX representation: a hybrid model structure combining polynomial models with multiresolution wavelet decompositions. Int. J. Syst. Sci. 2005, 36(3):137-152.
    • (2005) Int. J. Syst. Sci. , vol.36 , Issue.3 , pp. 137-152
    • Billings, S.A.1    Wei, H.L.2
  • 35
    • 79951508907 scopus 로고    scopus 로고
    • A hybrid sarima wavelet transform method for sales forecasting
    • Choi T.M., Yu Y., Au.K.F. A hybrid sarima wavelet transform method for sales forecasting. Decision Support Syst. 2011, 51:130-140.
    • (2011) Decision Support Syst. , vol.51 , pp. 130-140
    • Choi, T.M.1    Yu, Y.2    Au, K.F.3
  • 37
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19:716-723.
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 38
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz J.H. Estimating the dimension of a model. Ann. Stat. 1978, 6:461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, J.H.1
  • 39
    • 0035441349 scopus 로고    scopus 로고
    • Prediction of noisy chaotic time series using an optimal radial basis function neural network
    • Leung H., Lo T., Wang S. Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans. Neural Networks 2001, 12(5):1163-1172.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.5 , pp. 1163-1172
    • Leung, H.1    Lo, T.2    Wang, S.3
  • 41
    • 0003599567 scopus 로고    scopus 로고
    • Introduction to radial basis function networks
    • M.J.L. Orr, Introduction to radial basis function networks, 1996. http://www.anc.ed.ac.uk/_mjo/rbf.html.
    • (1996)
    • Orr, M.J.L.1
  • 42
    • 84964114702 scopus 로고
    • Problems and designs of cross-validation
    • Mosier C.I. Problems and designs of cross-validation. Educ. Psychol. Meas. 1951, 11:5-11.
    • (1951) Educ. Psychol. Meas. , vol.11 , pp. 5-11
    • Mosier, C.I.1
  • 46
    • 84862789203 scopus 로고    scopus 로고
    • Wikipedia
    • Wikipedia, http://en.wikipedia.org/wiki/Sunspot.
  • 48
    • 0035494005 scopus 로고    scopus 로고
    • Solar cycle forecasting: a nonlinear dynamics approach
    • Sello S. Solar cycle forecasting: a nonlinear dynamics approach. Astron. Astrophys. 2001, 377:312-320.
    • (2001) Astron. Astrophys. , vol.377 , pp. 312-320
    • Sello, S.1
  • 49
    • 0038649707 scopus 로고    scopus 로고
    • About sunspot number medium-term predictions
    • HiraisoSolar Terrestrial Research Center, Japan, G. Heckman (Ed.)
    • Denkmayr K., Cugnon P. About sunspot number medium-term predictions. Solar-Terrestrial Prediction Workshop, vol. V 1997, 103. HiraisoSolar Terrestrial Research Center, Japan. G. Heckman (Ed.).
    • (1997) Solar-Terrestrial Prediction Workshop, vol. V , pp. 103
    • Denkmayr, K.1    Cugnon, P.2
  • 50
    • 84862821088 scopus 로고    scopus 로고
    • SIDC (World Data Center for the Sunspot Index)
    • SIDC (World Data Center for the Sunspot Index). http://sidc.oma.be/index.php3.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.