-
1
-
-
0007410253
-
The entropy of a derived automorphism
-
L. M. Abramov. The entropy of a derived automorphism. Dokl. Akad. Nauk. SSSR 128 (1959), 647-650;
-
(1959)
Dokl. Akad. Nauk. SSSR
, vol.128
, pp. 647-650
-
-
Abramov, L.M.1
-
2
-
-
84863981722
-
-
Amer. Math. Soc. Transl. 49(2) (1966), 162-166.
-
(1966)
Amer. Math. Soc. Transl.
, vol.49
, Issue.2
, pp. 162-166
-
-
-
4
-
-
0002467622
-
On local entropy
-
Rio de Janeiro Lecture Notes in Mathematics, 1007). Springer, Berlin, 1983
-
M. Brin and A. Katok. On local entropy. Geometric Dynamics (Rio de Janeiro, 1981) (Lecture Notes in Mathematics, 1007). Springer, Berlin, 1983, pp. 30-38.
-
(1981)
Geometric Dynamics
, pp. 30-38
-
-
Brin, M.1
Katok, A.2
-
5
-
-
77955850077
-
Existence and convergence properties of physical measures for certain dynamical systems with holes
-
H. Bruin, M. Demers and I. Melbourne. Existence and convergence properties of physical measures for certain dynamical systems with holes. Ergod. Th. & Dynam. Sys. 30 (2010), 687-728.
-
(2010)
Ergod. Th. & Dynam. Sys.
, vol.30
, pp. 687-728
-
-
Bruin, H.1
Demers, M.2
Melbourne, I.3
-
6
-
-
0040942587
-
Markov extensions for multidimensional dynamical systems
-
J. Buzzi. Markov extensions for multidimensional dynamical systems. Israel J. Math. 112 (1999), 357-380.
-
(1999)
Israel J. Math.
, vol.112
, pp. 357-380
-
-
Buzzi, J.1
-
11
-
-
0000905087
-
The Yorke-Pianigiani measure and the asymptotic law on the limit Cantor set of expanding systems
-
P. Collet, S. Martínez and B. Schmitt. The Yorke-Pianigiani measure and the asymptotic law on the limit Cantor set of expanding systems. Nonlinearity 7 (1994), 1437-1443.
-
(1994)
Nonlinearity
, vol.7
, pp. 1437-1443
-
-
Collet, P.1
Martínez, S.2
Schmitt, B.3
-
12
-
-
79451474591
-
Functional norms for Young towers
-
M. F. Demers. Functional norms for Young towers. Ergod. Th. & Dynam. Sys. 30(5) (2010), 1371-1398.
-
(2010)
Ergod. Th. & Dynam. Sys.
, vol.30
, Issue.5
, pp. 1371-1398
-
-
Demers, M.F.1
-
13
-
-
76349119232
-
Escape rates and physically relevant measures for billiards with small holes
-
M. F. Demers, P. Wright and L.-S. Young. Escape rates and physically relevant measures for billiards with small holes. Comm. Math. Phys. 294 (2010), 353-388.
-
(2010)
Comm. Math. Phys.
, vol.294
, pp. 353-388
-
-
Demers, M.F.1
Wright, P.2
Young, L.-S.3
-
14
-
-
30644472521
-
Escape rates and conditionally invariant measures
-
DOI 10.1088/0951-7715/19/2/008, PII S0951771506088323
-
M. F. Demers and L.-S. Young. Escape rates and conditionally invariant measures. Nonlinearity 19 (2006), 377-397. (Pubitemid 43089094)
-
(2006)
Nonlinearity
, vol.19
, Issue.2
, pp. 377-397
-
-
Demers, M.F.1
Young, L.-S.2
-
15
-
-
0004188386
-
-
Springer, Berlin; with the collaboration of F. Ledrappier and F. Przytycki
-
A. Katok and J.-M. Strelcyn. Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities (Lecture Notes in Mathematics, 1222). Springer, Berlin, 1986, p. 283; with the collaboration of F. Ledrappier and F. Przytycki.
-
(1986)
Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities (Lecture Notes in Mathematics
, vol.1222
, pp. 283
-
-
Katok, A.1
Strelcyn, J.-M.2
-
16
-
-
0001048955
-
The metric entropy of diffeomorphisms. Part I: Characterization of measures satisfying Pesin's entropy formula
-
F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms. Part I: characterization of measures satisfying Pesin's entropy formula. Ann. of Math. (2) 122 (1985), 509-539.
-
(1985)
Ann. of Math.
, vol.2
, Issue.122
, pp. 509-539
-
-
Ledrappier, F.1
Young, L.-S.2
-
17
-
-
0002401417
-
A proof of Pesin's formula
-
R. Mané. A proof of Pesin's formula. Ergod. Th. & Dynam. Sys. 1(1) (1981), 95-102.
-
(1981)
Ergod. Th. & Dynam. Sys.
, vol.1
, Issue.1
, pp. 95-102
-
-
Mané, R.1
-
18
-
-
84961291543
-
Characteristic Lyapunov exponents and smooth ergodic theory
-
Ya. B. Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32(4) (1977), 55-114.
-
(1977)
Russian Math. Surveys
, vol.32
, Issue.4
, pp. 55-114
-
-
Ya., B.1
Pesin2
-
20
-
-
0002787955
-
Exact endomorphisms of Lebesgue space
-
V. Rohklin. Exact endomorphisms of Lebesgue space. Amer. Math. Soc. Transl. 2 39 (1964), 1-36.
-
(1964)
Amer. Math. Soc. Transl.
, vol.239
, pp. 1-36
-
-
Rohklin, V.1
-
21
-
-
51249179988
-
An inequality for the entropy of differentiable maps
-
D. Ruelle. An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat. 9(1) (1978), 83-87.
-
(1978)
Bol. Soc. Bras. Mat.
, vol.9
, Issue.1
, pp. 83-87
-
-
Ruelle, D.1
-
22
-
-
0033276174
-
Thermodynamic formalism of countable Markov shifts
-
O. Sarig. Thermodynamic formalism of countable Markov shifts. Ergod. Th.&Dynam. Sys. 19 (1999), 1565-1593.
-
(1999)
Ergod. Th.&Dynam. Sys.
, vol.19
, pp. 1565-1593
-
-
Sarig, O.1
-
23
-
-
0003294438
-
An introduction to ergodic theory
-
Springer, New York
-
P. Walters. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York, 1982, p. 250.
-
(1982)
Graduate Texts in Mathematics
, vol.79
, pp. 250
-
-
Walters, P.1
-
24
-
-
84966215243
-
Some large deviation results for dynamical systems
-
L.-S. Young. Some large deviation results for dynamical systems. Trans. Amer. Math. Soc. 318(2) (1990), 525-543.
-
(1990)
Trans. Amer. Math. Soc.
, vol.318
, Issue.2
, pp. 525-543
-
-
Young, L.-S.1
-
25
-
-
0003005736
-
Ergodic theory of differentiable dynamical systems
-
Eds. B. Branner and P. Hjorth. Kluwer Academic Publishers, Dordrecht
-
L.-S. Young. Ergodic theory of differentiable dynamical systems. Real and Complex Dynamics (NATO ASI Series, C464). Eds. B. Branner and P. Hjorth. Kluwer Academic Publishers, Dordrecht, 1995, pp. 293-336.
-
(1995)
Real and Complex Dynamics (NATO ASI Series, C 464)
, pp. 293-336
-
-
Young, L.-S.1
-
26
-
-
0032348050
-
Statistical properties of dynamical systems with some hyperbolicity
-
L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2) 147(3) (1998), 585-650.
-
(1998)
Ann. of Math. 2
, vol.147
, Issue.3
, pp. 585-650
-
-
Young, L.-S.1
-
27
-
-
0141450378
-
What are SRB measures, and which dynamical systems have them?
-
DOI 10.1023/A:1019762724717
-
L.-S. Young. What are SRB measures and which dynamical systems have them? J. Stat. Phys. 108 (2002), 733-754. (Pubitemid 37133766)
-
(2002)
Journal of Statistical Physics
, vol.108
, Issue.5-6
, pp. 733-754
-
-
Young, L.-S.1
|