-
1
-
-
0007410253
-
The entropy of a derived automorphism
-
L. M. Abramov. The entropy of a derived automorphism. Dokl. Akad. Nauk. SSSR 128 (1959), 647-650.
-
(1959)
Dokl. Akad. Nauk. SSSR
, vol.128
, pp. 647-650
-
-
Abramov, L.M.1
-
3
-
-
0003218287
-
Positive transfer operators and decay of correlations
-
World Scientific Singapore
-
V. Baladi. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear Dynamics, 16). World Scientific, Singapore, 2000.
-
(2000)
Advanced Series in Nonlinear Dynamics
, vol.16
-
-
Baladi, V.1
-
4
-
-
0001525001
-
Zeta functions and transfer operators for piecewise monotonic transformations
-
V. Baladi and G. Keller. Zeta functions and transfer operators for piecewise monotonic transformations. Comm. Math. Phys. 127 (1990), 459-477.
-
(1990)
Comm. Math. Phys.
, vol.127
, pp. 459-477
-
-
Baladi, V.1
Keller, G.2
-
5
-
-
0003208028
-
Equilibrium states and the ergodic theory of anosov diffeomorphisms
-
Springer Berlin
-
R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Berlin, 1975.
-
(1975)
Lecture Notes in Mathematics
, vol.470
-
-
Bowen, R.1
-
6
-
-
0039491584
-
Equilibrium states for unimodal maps
-
H. Bruin and G. Keller. Equilibrium states for unimodal maps. Ergod. Th. & Dynam. Sys. 18 (1998), 765-789.
-
(1998)
Ergod. Th. & Dynam. Sys.
, vol.18
, pp. 765-789
-
-
Bruin, H.1
Keller, G.2
-
8
-
-
77955852077
-
Equilibrium states for interval maps: The potential-t log |Df |
-
to appear
-
H. Bruin and M. Todd. Equilibrium states for interval maps: the potential-t log |Df |. Ann Sci. École Norm Sup. to appear.
-
Ann Sci. École Norm Sup.
-
-
Bruin, H.1
Todd, M.2
-
9
-
-
0040942587
-
Markov extensions for multi-dimensional dynamical systems
-
J. Buzzi. Markov extensions for multi-dimensional dynamical systems. Israel J. Math. 112 (1999), 357-380.
-
(1999)
Israel J. Math.
, vol.112
, pp. 357-380
-
-
Buzzi, J.1
-
10
-
-
0039844055
-
A natural invariant measure on Smale's horseshoe
-
N. N. Cencova. A natural invariant measure on Smale's horseshoe. Soviet Math. Dokl. 23 (1981), 87-91.
-
(1981)
Soviet Math. Dokl.
, vol.23
, pp. 87-91
-
-
Cencova, N.N.1
-
11
-
-
0039844059
-
Statistical properties of smooth Smale horseshoes
-
Ed. R. L. Dobrushin. Reidel, Dordrecht
-
N. N. Cencova. Statistical properties of smooth Smale horseshoes. Mathematical Problems of Statistical Mechanics and Dynamics. Ed. R. L. Dobrushin. Reidel, Dordrecht, 1986, pp. 199-256.
-
(1986)
Mathematical Problems of Statistical Mechanics and Dynamics
, pp. 199-256
-
-
Cencova, N.N.1
-
16
-
-
0000905087
-
The Yorke-Pianigiani measure and the asymptotic law on the limit Cantor set of expanding systems
-
P. Collet, S. Martinez and B. Schmitt. The Yorke-Pianigiani measure and the asymptotic law on the limit Cantor set of expanding systems. Nonlinearity 7 (1994), 1437-1443.
-
(1994)
Nonlinearity
, vol.7
, pp. 1437-1443
-
-
Collet, P.1
Martinez, S.2
Schmitt., B.3
-
17
-
-
0003140363
-
Quasi-stationary distribution and Gibbs measure of expanding systems
-
Eds. E. Tirapegui and W. Zeller. Kluwer Dordrecht
-
P. Collet, S. Martinez and B. Schmitt. Quasi-stationary distribution and Gibbs measure of expanding systems. Instabilities and Nonequilibrium Structures V. Eds. E. Tirapegui and W. Zeller. Kluwer, Dordrecht, 1996, pp. 205-219.
-
(1996)
Instabilities and Nonequilibrium Structures
, pp. 205-219
-
-
Collet, P.1
Martinez, S.2
Schmitt., B.3
-
19
-
-
18444381429
-
Markov extensions for dynamical systems with holes: An application to expanding maps of the interval
-
M. Demers. Markov extensions for dynamical systems with holes: an application to expanding maps of the interval. Israel J. Math. 146 (2005), 189-221.
-
(2005)
Israel J. Math.
, vol.146
, pp. 189-221
-
-
Demers, M.1
-
20
-
-
23444450388
-
Markov extensions and conditionally invariant measures for certain logistic maps with small holes
-
M. Demers. Markov extensions and conditionally invariant measures for certain logistic maps with small holes. Ergod. Th. & Dynam. Sys. 25(4) (2005), 1139-1171.
-
(2005)
Ergod. Th. & Dynam. Sys.
, vol.25
, Issue.4
, pp. 1139-1171
-
-
Demers, M.1
-
21
-
-
67349260245
-
Stability of statistical properties in two-dimensional piecewise hyperbolic maps
-
M. Demers and C. Liverani. Stability of statistical properties in two-dimensional piecewise hyperbolic maps. Trans. Amer. Math. Soc. 360(9) (2008), 4777-4814.
-
(2008)
Trans. Amer. Math. Soc.
, vol.360
, Issue.9
, pp. 4777-4814
-
-
Demers, M.1
Liverani, C.2
-
22
-
-
30644472521
-
Escape rates and conditionally invariant measures
-
M. Demers and L.-S. Young. Escape rates and conditionally invariant measures. Nonlinearity 19 (2006), 377-397.
-
(2006)
Nonlinearity
, vol.19
, pp. 377-397
-
-
Demers, M.1
Young., L.-S.2
-
23
-
-
33845763362
-
Statistical properties of one-dimensional maps with critical points and singularities
-
K. Díaz-Ordaz, M. Holland and S. Luzzatto. Statistical properties of one-dimensional maps with critical points and singularities. Stoch. Dyn. 6 (2006), 423-458.
-
(2006)
Stoch. Dyn.
, vol.6
, pp. 423-458
-
-
Díaz-Ordaz, K.1
Holland, M.2
Luzzatto, S.3
-
24
-
-
0035981928
-
Intermittency in families of unimodal maps
-
A. Homburg and T. Young. Intermittency in families of unimodal maps. Ergod. Th. & Dynam. Sys. 22(1) (2002), 203-225.
-
(2002)
Ergod. Th. & Dynam. Sys.
, vol.22
, Issue.1
, pp. 203-225
-
-
Homburg, A.1
Young, T.2
-
25
-
-
84966222277
-
Markov extensions, zeta-functions, and Fredholm theory for piecewise invertible dynamical systems
-
G. Keller. Markov extensions, zeta-functions, and Fredholm theory for piecewise invertible dynamical systems. Trans. Amer. Math. Soc. 314 (1989), 433-497.
-
(1989)
Trans. Amer. Math. Soc.
, vol.314
, pp. 433-497
-
-
Keller, G.1
-
26
-
-
21844485876
-
Decay of correlations for piecewise expanding maps
-
C. Liverani. Decay of correlations for piecewise expanding maps. J. Stat. Phys. 78 (1995), 1111-1129.
-
(1995)
J. Stat. Phys.
, vol.78
, pp. 1111-1129
-
-
Liverani, C.1
-
27
-
-
0037402867
-
Lasota-Yorke maps with holes: Conditionally invariant probability measures and invariant probability measures on the survivor set
-
C. Liverani and V. Maume-Deschamps. Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 385-412.
-
(2003)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.39
, pp. 385-412
-
-
Liverani, C.1
Maume-Deschamps, V.2
-
28
-
-
0030128039
-
Open billiards: Cantor sets, invariant and conditionally invariant probabilities
-
A. Lopes and R. Markarian. Open billiards: Cantor sets, invariant and conditionally invariant probabilities. SIAM J. Appl. Math. 56 (1996), 651-680.
-
(1996)
SIAM J. Appl. Math.
, vol.56
, pp. 651-680
-
-
Lopes, A.1
Markarian, R.2
-
30
-
-
84967713041
-
Expanding maps on sets which are almost invariant: Decay and chaos
-
G. Pianigiani and J. Yorke. Expanding maps on sets which are almost invariant: decay and chaos. Trans. Amer. Math. Soc. 252 (1979), 351-366.
-
(1979)
Trans. Amer. Math. Soc.
, vol.252
, pp. 351-366
-
-
Pianigiani, G.1
Yorke, J.2
-
32
-
-
0033276174
-
Thermodynamic formalism of countable Markov shifts
-
O. Sarig. Thermodynamic formalism of countable Markov shifts. Ergod. Th. & Dynam. Sys. 19 (1999), 1565-1593.
-
(1999)
Ergod. Th. & Dynam. Sys.
, vol.19
, pp. 1565-1593
-
-
Sarig, O.1
-
33
-
-
0032348050
-
Statistical properties of dynamical systems with some hyperbolicity
-
L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2) 147 (1998), 585-650.
-
(1998)
Ann. of Math.
, vol.2
, Issue.147
, pp. 585-650
-
-
Young., L.-S.1
|