메뉴 건너뛰기




Volumn 9, Issue , 2012, Pages 28-38

Incorporating differential evolution (DE) optimization strategy to boost hydrogen and DME production rate through a membrane assisted single-step DME heat exchanger reactor

Author keywords

Differential evolution optimization approach; Direct dimethyl ether (DME) synthesis; Hydrogen production; Pd Ag membrane; Thermally coupled heat exchanger reactor

Indexed keywords

CARBON MONOXIDE; CYCLOHEXANE; DEHYDROGENATION; ETHERS; EVOLUTIONARY ALGORITHMS; HEAT EXCHANGERS; HYDROGEN FUELS; OPTIMIZATION;

EID: 84862705073     PISSN: 18755100     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jngse.2012.05.006     Document Type: Article
Times cited : (22)

References (53)
  • 1
    • 74849096484 scopus 로고    scopus 로고
    • Hydrogen production by methane decomposition: a review
    • Abbas H.F., Wan Daud W.M.A. Hydrogen production by methane decomposition: a review. Int. J. Hydrogen Energy 2010, 35:1160-1190.
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 1160-1190
    • Abbas, H.F.1    Wan Daud, W.M.A.2
  • 2
    • 0030615997 scopus 로고    scopus 로고
    • The fluidized-bed membrane reactor for steam methane reforming: model verification and parametric study
    • Adris A.M., Lim C.J., Grace J.R. The fluidized-bed membrane reactor for steam methane reforming: model verification and parametric study. Chem. Eng. Sci. 1997, 52:1609-1622.
    • (1997) Chem. Eng. Sci. , vol.52 , pp. 1609-1622
    • Adris, A.M.1    Lim, C.J.2    Grace, J.R.3
  • 3
    • 67349103826 scopus 로고    scopus 로고
    • Integrated design and control of plant wide systems coupling exothermic and endothermic reactions
    • Altimari P., Bildea C.S. Integrated design and control of plant wide systems coupling exothermic and endothermic reactions. Comput. Chem. Eng. 2009, 33:911-923.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 911-923
    • Altimari, P.1    Bildea, C.S.2
  • 4
    • 0037138968 scopus 로고    scopus 로고
    • Future directions of membrane gas separation technology
    • Baker R.W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 2002, 41:1393-1411.
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 1393-1411
    • Baker, R.W.1
  • 5
    • 33747878550 scopus 로고    scopus 로고
    • Modified differential evolution (MDE) for optimization of non-linear chemical processes
    • Babu B.V., Angira R. Modified differential evolution (MDE) for optimization of non-linear chemical processes. Comput. Chem. Eng. 2006, 30:989-1002.
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 989-1002
    • Babu, B.V.1    Angira, R.2
  • 6
    • 34249852438 scopus 로고    scopus 로고
    • Differential evolution strategies for optimal design of shell-and-tube heat exchangers
    • Babu B.V., Munawar S.A. Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chem. Eng. Sci. 2007, 62:3720-3739.
    • (2007) Chem. Eng. Sci. , vol.62 , pp. 3720-3739
    • Babu, B.V.1    Munawar, S.A.2
  • 7
    • 0035481360 scopus 로고    scopus 로고
    • Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor
    • Basile A., Chiappetta G., Tosti S., Violante V. Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor. Sep. Purif. Technol. 2001, 25:549-571.
    • (2001) Sep. Purif. Technol. , vol.25 , pp. 549-571
    • Basile, A.1    Chiappetta, G.2    Tosti, S.3    Violante, V.4
  • 8
    • 27144442123 scopus 로고    scopus 로고
    • Dehydrogenation of cyclohexane over Ni based catalysts supported on activated carbon using spray-pulsed reactor and enhancement in activity by addition of a small amount of Pt
    • Biniwale R.B., Kariya N., Ichikawa M. Dehydrogenation of cyclohexane over Ni based catalysts supported on activated carbon using spray-pulsed reactor and enhancement in activity by addition of a small amount of Pt. Catal. Lett. 2005, 105:83-87.
    • (2005) Catal. Lett. , vol.105 , pp. 83-87
    • Biniwale, R.B.1    Kariya, N.2    Ichikawa, M.3
  • 9
    • 0037086789 scopus 로고    scopus 로고
    • Catalytic membrane reactors for the oxidehydrogenation of propane: experimental and modelling study
    • Bottino A., Capannelli G., Comite A. Catalytic membrane reactors for the oxidehydrogenation of propane: experimental and modelling study. J. Membr. Sci. 2002, 197:75-88.
    • (2002) J. Membr. Sci. , vol.197 , pp. 75-88
    • Bottino, A.1    Capannelli, G.2    Comite, A.3
  • 10
    • 35948940853 scopus 로고    scopus 로고
    • Simulation study of water gas shift reaction in a membrane reactor
    • Brunetti A., Caravella A., Barbieri G., Drioli E. Simulation study of water gas shift reaction in a membrane reactor. J. Membr. Sci. 2007, 306:329-340.
    • (2007) J. Membr. Sci. , vol.306 , pp. 329-340
    • Brunetti, A.1    Caravella, A.2    Barbieri, G.3    Drioli, E.4
  • 11
    • 34548558793 scopus 로고    scopus 로고
    • A novel circulating fluidized bed membrane reformer for efficient pure hydrogen production for fuel cells from higher hydrocarbons
    • Ph.D. thesis, Auburn University
    • Chen, Z., 2004. A novel circulating fluidized bed membrane reformer for efficient pure hydrogen production for fuel cells from higher hydrocarbons. Ph.D. thesis, Auburn University.
    • (2004)
    • Chen, Z.1
  • 12
    • 0033980454 scopus 로고    scopus 로고
    • Performance of double-pipe membrane reactor comprising heteropolyacid catalyst and polymer membrane for the MTBE (methyl tert-butyl ether) decomposition
    • Choi J.S., Song I.K., Lee W.Y. Performance of double-pipe membrane reactor comprising heteropolyacid catalyst and polymer membrane for the MTBE (methyl tert-butyl ether) decomposition. J. Membr. Sci. 2000, 166:159-175.
    • (2000) J. Membr. Sci. , vol.166 , pp. 159-175
    • Choi, J.S.1    Song, I.K.2    Lee, W.Y.3
  • 13
    • 0035863964 scopus 로고    scopus 로고
    • An economic feasibility study for water gas shift membrane reactor
    • Criscuoli A., Basile A., Drioli E., Loiacono O. An economic feasibility study for water gas shift membrane reactor. J. Membr. Sci. 2001, 181:21-27.
    • (2001) J. Membr. Sci. , vol.181 , pp. 21-27
    • Criscuoli, A.1    Basile, A.2    Drioli, E.3    Loiacono, O.4
  • 15
    • 0035040464 scopus 로고    scopus 로고
    • Process intensification using multifunctional reactors
    • Dautzenberg F.M., Mukherjee M. Process intensification using multifunctional reactors. Chem. Eng. Sci. 2001, 56:251-267.
    • (2001) Chem. Eng. Sci. , vol.56 , pp. 251-267
    • Dautzenberg, F.M.1    Mukherjee, M.2
  • 18
    • 0034660741 scopus 로고    scopus 로고
    • Modeling and basic characteristics of novel integrated dehydrogenation-hydrogenation membrane catalytic reactors
    • Elnashaie S.S.E.H., Moustafa T., Alsoudani T., Elshishini S.S. Modeling and basic characteristics of novel integrated dehydrogenation-hydrogenation membrane catalytic reactors. Comput. Chem. Eng. 2000, 24:1293-1300.
    • (2000) Comput. Chem. Eng. , vol.24 , pp. 1293-1300
    • Elnashaie, S.S.E.H.1    Moustafa, T.2    Alsoudani, T.3    Elshishini, S.S.4
  • 20
    • 50649109394 scopus 로고    scopus 로고
    • The influence of metals and acidic oxide species on the steam reforming of dimethyl ether (DME)
    • Fukunaga T., Ryumon N., Shimazu S. The influence of metals and acidic oxide species on the steam reforming of dimethyl ether (DME). Appl. Catal. A 2008, 348:193-200.
    • (2008) Appl. Catal. A , vol.348 , pp. 193-200
    • Fukunaga, T.1    Ryumon, N.2    Shimazu, S.3
  • 21
    • 75249086547 scopus 로고    scopus 로고
    • Process intensification in the petrochemicals industry: drivers and hurdles for commercial implementation
    • Harmsen J. Process intensification in the petrochemicals industry: drivers and hurdles for commercial implementation. Chem. Eng. Process 2010, 49:70-73.
    • (2010) Chem. Eng. Process , vol.49 , pp. 70-73
    • Harmsen, J.1
  • 22
    • 46249132391 scopus 로고    scopus 로고
    • Simulation and model design of pipe-shell reactor for the direct synthesis of dimethyl ether from syngas
    • Hu Y., Nie Zh, Fang D. Simulation and model design of pipe-shell reactor for the direct synthesis of dimethyl ether from syngas. J. Nat. Gas. Chem. 2008, 17:195-200.
    • (2008) J. Nat. Gas. Chem. , vol.17 , pp. 195-200
    • Hu, Y.1    Nie, Z.2    Fang, D.3
  • 23
    • 0004206929 scopus 로고
    • Method and apparatus for catalytic heat-exchange
    • US Patent 4214867
    • Hunter, I.B., McGuire, G., 1980. Method and apparatus for catalytic heat-exchange. US Patent 4214867.
    • (1980)
    • Hunter, I.B.1    McGuire, G.2
  • 24
    • 0023422667 scopus 로고
    • A membrane reactor using palladium
    • Itoh N. A membrane reactor using palladium. AIChE J. 1987, 33:1576-1578.
    • (1987) AIChE J. , vol.33 , pp. 1576-1578
    • Itoh, N.1
  • 25
    • 0041422247 scopus 로고    scopus 로고
    • Hydrogen recovery from cyclohexane as a chemical hydrogen carrier using a palladium membrane reactor
    • Itoh N., et al. Hydrogen recovery from cyclohexane as a chemical hydrogen carrier using a palladium membrane reactor. Catal. Today 2003, 82:119-125.
    • (2003) Catal. Today , vol.82 , pp. 119-125
    • Itoh, N.1
  • 26
    • 77951112559 scopus 로고    scopus 로고
    • Hydrogen storage in Mg: a most promising material
    • Jain I.P., Lal C., Jain A. Hydrogen storage in Mg: a most promising material. Int. J. Hydrogen Energy 2010, 35:5133-5144.
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 5133-5144
    • Jain, I.P.1    Lal, C.2    Jain, A.3
  • 27
    • 4644328705 scopus 로고    scopus 로고
    • Modeling of an FAU type zeolite membrane reactor for the catalytic dehydrogenation of cyclohexane
    • Jeong B.H., Sotowa K.I., Kusakabe K. Modeling of an FAU type zeolite membrane reactor for the catalytic dehydrogenation of cyclohexane. Chem. Eng. J. 2004, 103:69-75.
    • (2004) Chem. Eng. J. , vol.103 , pp. 69-75
    • Jeong, B.H.1    Sotowa, K.I.2    Kusakabe, K.3
  • 28
    • 35548943048 scopus 로고    scopus 로고
    • Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts
    • Jin D., Zhu B., Hou Zh., Fei J., Lou H., Zheng X. Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts. Fuel 2007, 86:1707-1713.
    • (2007) Fuel , vol.86 , pp. 1707-1713
    • Jin, D.1    Zhu, B.2    Hou, Z.3    Fei, J.4    Lou, H.5    Zheng, X.6
  • 29
    • 0038035956 scopus 로고    scopus 로고
    • Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts
    • Kariya N., Fukuoka A., Utagawa T., Sakuramoto M., Goto Y., Ichikawa M. Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts. Appl. Catalyst A 2003, 247:247-259.
    • (2003) Appl. Catalyst A , vol.247 , pp. 247-259
    • Kariya, N.1    Fukuoka, A.2    Utagawa, T.3    Sakuramoto, M.4    Goto, Y.5    Ichikawa, M.6
  • 30
    • 77957893904 scopus 로고    scopus 로고
    • Methanol dehydration to dimethyl ether over highly porous xerogel alumina catalyst: flow rate effect
    • Khaleel A. Methanol dehydration to dimethyl ether over highly porous xerogel alumina catalyst: flow rate effect. Fuel Process Technol. 2010, 91:1505-1509.
    • (2010) Fuel Process Technol. , vol.91 , pp. 1505-1509
    • Khaleel, A.1
  • 32
    • 0001120896 scopus 로고
    • Thermal conductivity of gas mixture
    • Lindsay A.L., Bromley L.A. Thermal conductivity of gas mixture. Ind. Eng. Chem. 1950, 42:1508-1510.
    • (1950) Ind. Eng. Chem. , vol.42 , pp. 1508-1510
    • Lindsay, A.L.1    Bromley, L.A.2
  • 35
    • 17444380822 scopus 로고    scopus 로고
    • Intrinsic kinetics of dimethyl ether synthesis from syngas
    • Nie Zh., Liu H., Liu D., Ying W., Fang D. Intrinsic kinetics of dimethyl ether synthesis from syngas. J. Nat. Gas. Chem. 2005, 14:22-28.
    • (2005) J. Nat. Gas. Chem. , vol.14 , pp. 22-28
    • Nie, Z.1    Liu, H.2    Liu, D.3    Ying, W.4    Fang, D.5
  • 36
    • 0037042754 scopus 로고    scopus 로고
    • Low-pressure DME synthesis with cu-bases hybrid catalyst using temperature-gradient reactor
    • Omata K., Watanabe Y., Umegaki T., Ishiguro G., Yamada M. Low-pressure DME synthesis with cu-bases hybrid catalyst using temperature-gradient reactor. Fuel 2002, 81:1605-1609.
    • (2002) Fuel , vol.81 , pp. 1605-1609
    • Omata, K.1    Watanabe, Y.2    Umegaki, T.3    Ishiguro, G.4    Yamada, M.5
  • 37
    • 37249051222 scopus 로고    scopus 로고
    • Steady-state and dynamic reactor models for coupling exothermic and endothermic reactions
    • Washington University, Ph.D thesis.
    • Ramaswamy, R.C., 2006. Steady-state and dynamic reactor models for coupling exothermic and endothermic reactions. Washington University, Ph.D thesis.
    • (2006)
    • Ramaswamy, R.C.1
  • 41
    • 0028549629 scopus 로고
    • Methane steam reforming in symmetric Pd- and Pd-Ag/porous SS membrane reactor
    • Shu G., Grandjean B.P.A., Kaliaguine S. Methane steam reforming in symmetric Pd- and Pd-Ag/porous SS membrane reactor. Appl. Catalyst A 1994, 119:305-325.
    • (1994) Appl. Catalyst A , vol.119 , pp. 305-325
    • Shu, G.1    Grandjean, B.P.A.2    Kaliaguine, S.3
  • 43
    • 0035970146 scopus 로고    scopus 로고
    • Modeling a catalytic polymeric non-porous membrane reactor
    • Sousa J.M., Cruz P., Mendes A. Modeling a catalytic polymeric non-porous membrane reactor. J. Membr. Sci. 2001, 181:241-252.
    • (2001) J. Membr. Sci. , vol.181 , pp. 241-252
    • Sousa, J.M.1    Cruz, P.2    Mendes, A.3
  • 45
    • 19944367929 scopus 로고    scopus 로고
    • Modification of cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase
    • Tan Y., Xie H., Cui H., Han Y., Zhong B. Modification of cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase. Catal. Today 2005, 104:1025-1029.
    • (2005) Catal. Today , vol.104 , pp. 1025-1029
    • Tan, Y.1    Xie, H.2    Cui, H.3    Han, Y.4    Zhong, B.5
  • 46
    • 78650576479 scopus 로고    scopus 로고
    • Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor
    • Vakili R., Pourazadi E., Setoodeh P., Eslamloueyan R., Rahimpour M.R. Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor. Appl. Energy 2011, 88:1211-1223.
    • (2011) Appl. Energy , vol.88 , pp. 1211-1223
    • Vakili, R.1    Pourazadi, E.2    Setoodeh, P.3    Eslamloueyan, R.4    Rahimpour, M.R.5
  • 47
    • 5044242245 scopus 로고    scopus 로고
    • Process intensification in the textile industry: the role of membrane technology
    • Van der Bruggen B., Curcio E., Drioli E. Process intensification in the textile industry: the role of membrane technology. J. Environ. Manage. 2004, 73:267-274.
    • (2004) J. Environ. Manage. , vol.73 , pp. 267-274
    • Van der Bruggen, B.1    Curcio, E.2    Drioli, E.3
  • 48
    • 0037064394 scopus 로고    scopus 로고
    • A novel reverse flow reactor coupling endothermic and exothermic reactions: an experimental study
    • Van Sint Annaland M., Nijssen R.C. A novel reverse flow reactor coupling endothermic and exothermic reactions: an experimental study. Chem. Eng. Sci. 2002, 57:4967-4985.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 4967-4985
    • Van Sint Annaland, M.1    Nijssen, R.C.2
  • 49
    • 37549015612 scopus 로고    scopus 로고
    • Kinetic modeling of pure hydrogen production from decalin
    • Wang B., Goodman W.D., Froment G.F. Kinetic modeling of pure hydrogen production from decalin. J. Catal. 2008, 253:229-238.
    • (2008) J. Catal. , vol.253 , pp. 229-238
    • Wang, B.1    Goodman, W.D.2    Froment, G.F.3
  • 50
    • 60049092471 scopus 로고    scopus 로고
    • 2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis
    • 2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis. Fuel Process Technol. 2009, 90:446-451.
    • (2009) Fuel Process Technol. , vol.90 , pp. 446-451
    • Wang, D.1    Han, Y.2    Tan, Y.3    Tsubaki, N.4
  • 51
    • 0000718931 scopus 로고
    • Estimation of liquid diffusion coefficients
    • Wilke C.R. Estimation of liquid diffusion coefficients. Chem. Eng. Prog. 1949, 5:218.
    • (1949) Chem. Eng. Prog. , vol.5 , pp. 218
    • Wilke, C.R.1
  • 52
    • 57149090763 scopus 로고    scopus 로고
    • Non-isothermal simulation of cyclohexane dehydrogenation in an inert membrane reactor with catalytic pellets in the feed-side chamber
    • Yang H.S., Chou C.T. Non-isothermal simulation of cyclohexane dehydrogenation in an inert membrane reactor with catalytic pellets in the feed-side chamber. J. Chin. Inst. Chem. Eng. 2008, 39:227-235.
    • (2008) J. Chin. Inst. Chem. Eng. , vol.39 , pp. 227-235
    • Yang, H.S.1    Chou, C.T.2
  • 53
    • 53449096511 scopus 로고    scopus 로고
    • 3 catalysts and their activity in dehydrogenation of methylcyclohexane for hydrogen production
    • 3 catalysts and their activity in dehydrogenation of methylcyclohexane for hydrogen production. Catal. Today 2008, 138:198-202.
    • (2008) Catal. Today , vol.138 , pp. 198-202
    • Yolcular, S.1    Olgun, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.