메뉴 건너뛰기




Volumn 18, Issue 2, 2011, Pages 183-194

A bayesian approach for analyzing longitudinal structural equation models

Author keywords

Bayesian approach; Lv; Latent variables; Longitudinal study on cocaine use; MCMC algorithm; Measure; Ordered categorical variables

Indexed keywords


EID: 79957849749     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1080/10705511.2011.557331     Document Type: Article
Times cited : (17)

References (15)
  • 2
  • 3
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman, A., Meng, X. L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733-807.
    • (1996) Statistica Sinica , vol.6 , pp. 733-807
    • Gelman, A.1    Meng, X.L.2    Stern, H.3
  • 5
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their application
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 6
    • 34249045399 scopus 로고    scopus 로고
    • Prediction of long-term stable recovery from heroin addiction: Findings based on a 33-year follow-up study
    • Hser, Y. (2007). Prediction of long-term stable recovery from heroin addiction: Findings based on a 33-year follow-up study. Journal of Addiction Diseases, 26, 51-60.
    • (2007) Journal of Addiction Diseases , vol.26 , pp. 51-60
    • Hser, Y.1
  • 8
    • 0035638096 scopus 로고    scopus 로고
    • Criterion-based methods for Bayesian model assessment
    • Ibrahim, J. G., Chen, M. H., & Sinha, D. (2001). Criterion-based methods for Bayesian model assessment. Statistica Sinica, 11, 419-443.
    • (2001) Statistica Sinica , vol.11 , pp. 419-443
    • Ibrahim, J.G.1    Chen, M.H.2    Sinha, D.3
  • 10
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using EM algorithm
    • Louis, T. A. (1982). Finding the observed information matrix when using EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 226-233.
    • (1982) Journal of the Royal Statistical Society, Series B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 11
    • 0000237150 scopus 로고
    • Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases
    • Martin, J. K., & McDonald, R. P. (1975). Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases. Psychometrika, 40, 505-517.
    • (1975) Psychometrika , vol.40 , pp. 505-517
    • Martin, J.K.1    McDonald, R.P.2
  • 14
    • 48049087205 scopus 로고    scopus 로고
    • A two-level structural equation model approach for analyzing multivariate longitudinal responses
    • Song, X. Y., Lee, S. Y., & Hser, Y. I. (2008). A two-level structural equation model approach for analyzing multivariate longitudinal responses. Statistics in Medicine, 27, 3017-3041.
    • (2008) Statistics in Medicine , vol.27 , pp. 3017-3041
    • Song, X.Y.1    Lee, S.Y.2    Hser, Y.I.3
  • 15
    • 78651273252 scopus 로고    scopus 로고
    • Model comparison of Bayesian semiparametric and parametric structural equation models
    • Song, X. Y., Xia, Y. M., Pan, J. H., & Lee, S. Y. (2011). Model comparison of Bayesian semiparametric and parametric structural equation models. Structural Equation Modeling, 18, 55-72.
    • (2011) Structural Equation Modeling , vol.18 , pp. 55-72
    • Song, X.Y.1    Xia, Y.M.2    Pan, J.H.3    Lee, S.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.