-
2
-
-
33746060884
-
Unifying divergence minimization and statistical inference via convex duality
-
H.U. Simon and G. Lugosi, editors, LNCS, Springer
-
Y. Altun and A.J. Smola. Unifying divergence minimization and statistical inference via convex duality. In H.U. Simon and G. Lugosi, editors, Proc. Annual Conf. Computational Learning Theory, LNCS, pages 139-153. Springer, 2006.
-
(2006)
Proc. Annual Conf. Computational Learning Theory
, pp. 139-153
-
-
Altun, Y.1
Smola, A.J.2
-
4
-
-
85162021730
-
Adaptive online gradient descent
-
J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Cambridge, MA, MIT Press
-
P.L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gradient descent. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, Cambridge, MA, 2008. MIT Press.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
-
-
Bartlett, P.L.1
Hazan, E.2
Rakhlin, A.3
-
6
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
76649133906
-
A kernel method for the two sample problem
-
A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A.J. Smola. A kernel method for the two sample problem. Technical Report 157, MPI for Biological Cybernetics, 2008.
-
(2008)
Technical Report 157 MPI for Biological Cybernetics
-
-
Gretton, A.1
Borgwardt, K.2
Rasch, M.3
Schölkopf, B.4
Smola, A.J.5
-
8
-
-
70349847999
-
Covariate shift by kernel mean matching
-
J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, editors, Cambridge, MA, MIT Press
-
A. Gretton, A.J. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf. Covariate shift by kernel mean matching. In J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, editors, Covariate Shift and Local Learning by Distribution Matching, pages 131-160, Cambridge, MA, 2008. MIT Press.
-
(2008)
Covariate Shift and Local Learning by Distribution Matching
, pp. 131-160
-
-
Gretton, A.1
Smola, A.J.2
Huang, J.3
Schmittfull, M.4
Borgwardt, K.5
Schölkopf, B.6
-
10
-
-
84862299368
-
More bang for their bucks: Assessing new features for online advertisers
-
D. Lambert and D. Pregibon. More bang for their bucks: assessing new features for online advertisers. SIGKDD Explorations, 9(2):100-107, 2007.
-
(2007)
SIGKDD Explorations
, vol.9
, Issue.2
, pp. 100-107
-
-
Lambert, D.1
Pregibon, D.2
-
14
-
-
67149129014
-
-
MIT Press, Cambridge, MA
-
J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, editors. Dataset Shift in Machine Learning. MIT Press, Cambridge, MA, 2008.
-
(2008)
Dataset Shift in Machine Learning
-
-
Quiñonero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.4
-
15
-
-
85161980201
-
Random features for large-scale kernel machines
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
-
A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
-
-
Rahimi, A.1
Recht, B.2
-
17
-
-
77951622706
-
The central role of propensity score in observational studies for causal effects
-
P. Rosenbaum and D. Rubin. The central role of propensity score in observational studies for causal effects. Biometrica, 70:41-55, 1983.
-
(1983)
Biometrica
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.1
Rubin, D.2
-
18
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson. Estimating the support of a high-dimensional distribution. Neural Comput., 13(7):1443-1471, 2001.
-
(2001)
Neural Comput.
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
19
-
-
77956510235
-
Hilbert space embeddings of conditional distributions
-
L. Song, J. Huang, A.J. Smola, and K. Fukumizu. Hilbert space embeddings of conditional distributions. In ICML, 2009.
-
(2009)
ICML
-
-
Song, L.1
Huang, J.2
Smola, A.J.3
Fukumizu, K.4
-
20
-
-
85161964516
-
Direct importance estimation with model selection and its application to covariate shift adaptation
-
Cambridge, MA
-
M. Sugiyama, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe. Direct importance estimation with model selection and its application to covariate shift adaptation. In Advances in Neural Information Processing Systems 20, pages 1433-1440, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1433-1440
-
-
Sugiyama, M.1
Nakajima, S.2
Kashima, H.3
Von Bünau, P.4
Kawanabe, M.5
-
21
-
-
52649172710
-
Direct density ratio estimation for large-scale covariate shift adaptation
-
Y. Tsuboi, H. Kashima, S. Hido, S. Bickel, and M. Sugiyama. Direct density ratio estimation for large-scale covariate shift adaptation. In SDM, pages 443-454, 2008.
-
(2008)
SDM
, pp. 443-454
-
-
Tsuboi, Y.1
Kashima, H.2
Hido, S.3
Bickel, S.4
Sugiyama, M.5
-
22
-
-
33749243756
-
Accelerated training conditional random fields with stochastic gradient methods
-
New York, NY, USA, ACM Press
-
S.V.N. Vishwanathan, N.N. Schraudolph, M. Schmidt, and K. Murphy. Accelerated training conditional random fields with stochastic gradient methods. In ICML, pages 969-976, New York, NY, USA, 2006. ACM Press.
-
(2006)
ICML
, pp. 969-976
-
-
Vishwanathan, S.V.N.1
Schraudolph, N.N.2
Schmidt, M.3
Murphy, K.4
-
23
-
-
1942484421
-
Online convex programming and generalised infinitesimal gradient ascent
-
M. Zinkevich. Online convex programming and generalised infinitesimal gradient ascent. In ICML, pages 928-936, 2003.
-
(2003)
ICML
, pp. 928-936
-
-
Zinkevich, M.1
|