메뉴 건너뛰기




Volumn , Issue , 2005, Pages 64-71

Discriminative training of clustering functions: Theory and experiments with entity identification

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING APPROACH; DISCRIMINATIVE TRAINING; DISTANCE METRICS; ENTITY IDENTIFICATION; LEARNING TASKS; NATURAL LANGUAGE PROCESSING; OPTIMIZATION PROCEDURES; PERFORMANCE IMPROVEMENTS;

EID: 84862294955     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (26)
  • 1
    • 84899006536 scopus 로고    scopus 로고
    • Learning spectral clustering
    • In
    • F. R. Bach and M. I. Jordan. 2003. Learning spectral clustering. In NIPS-03.
    • (2003) NIPS-03
    • Bach, F.R.1    Jordan, M.I.2
  • 2
    • 1942517347 scopus 로고    scopus 로고
    • Learning distance functions using equivalence relations
    • In
    • A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. 2003. Learning distance functions using equivalence relations. In ICML-03, pages 11-18.
    • (2003) ICML-03 , pp. 11-18
    • Bar-Hillel, A.1    Hertz, T.2    Shental, N.3    Weinshall, D.4
  • 4
    • 14344264451 scopus 로고    scopus 로고
    • Integrating constraints and metric learning in semi-supervised clustering
    • In
    • M Bilenko, S. Basu, and R. J. Mooney. 2004. Integrating constraints and metric learning in semi-supervised clustering. In ICML-04, pages 81-88.
    • (2004) ICML-04 , pp. 81-88
    • Bilenko, M.1    Basu, S.2    Mooney, R.J.3
  • 6
    • 85094927271 scopus 로고    scopus 로고
    • Noun phrase coreference as clustering
    • In
    • C. Cardie and K. Wagstaff. 1999. Noun phrase coreference as clustering. In EMNLP-99, pages 82-89.
    • (1999) EMNLP-99 , pp. 82-89
    • Cardie, C.1    Wagstaff, K.2
  • 7
    • 0037986930 scopus 로고    scopus 로고
    • A comparative study and extensions to k-medoids algorithms
    • In
    • S. C. Chu, J. F. Roddick, and J. S. Pan. 2001. A comparative study and extensions to k-medoids algorithms. In ICOTA-01.
    • (2001) ICOTA-01
    • Chu, S.C.1    Roddick, J.F.2    Pan, J.S.3
  • 8
    • 0242540438 scopus 로고    scopus 로고
    • Learning to match and cluster large high-dimensional data sets for data integration
    • In
    • W. Cohen and J. Richman. 2002. Learning to match and cluster large high-dimensional data sets for data integration. In KDD-02, pages 475-480.
    • (2002) KDD-02 , pp. 475-480
    • Cohen, W.1    Richman, J.2
  • 9
    • 11144240583 scopus 로고    scopus 로고
    • A comparison of string metrics for name-matching tasks
    • In
    • W. Cohen, P. Ravikumar, and S. Fienberg. 2003. A comparison of string metrics for name-matching tasks. In IIWeb Workshop 2003, pages 73-78.
    • (2003) IIWeb Workshop 2003 , pp. 73-78
    • Cohen, W.1    Ravikumar, P.2    Fienberg, S.3
  • 10
    • 0032633485 scopus 로고    scopus 로고
    • Similarity-based models of word cooccurrence probabilities
    • I. Dagan, L. Lee, and F. Pereira. 1999. Similarity-based models of word cooccurrence probabilities. Machine Learning, 34(1-3):43-69.
    • (1999) Machine Learning , vol.34 , Issue.1-3 , pp. 43-69
    • Dagan, I.1    Lee, L.2    Pereira, F.3
  • 11
    • 0031624445 scopus 로고    scopus 로고
    • Large margin classification using the Perceptron algorithm
    • In
    • Y. Freund and R. Schapire. 1998. Large margin classification using the Perceptron algorithm. In COLT-98.
    • (1998) COLT-98
    • Freund, Y.1    Schapire, R.2
  • 12
    • 80053342630 scopus 로고    scopus 로고
    • Automatic feature vector quality and distributional similarity
    • In
    • M. Geffet and I. Dagan. 2004. Automatic feature vector quality and distributional similarity. In COLING-04.
    • (2004) COLING-04
    • Geffet, M.1    Dagan, I.2
  • 14
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • J. Hartigan and M. Wong. 1979. A k-means clustering algorithm. Applied Statistics, 28(1):100-108.
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.1    Wong, M.2
  • 15
    • 3543131400 scopus 로고    scopus 로고
    • Interpreting and extending classical agglomerative clustering algorithms using a model-based approach
    • In
    • S. Kamvar, D. Klein, and C. Manning. 2002. Interpreting and extending classical agglomerative clustering algorithms using a model-based approach. In ICML-02, pages 283-290.
    • (2002) ICML-02 , pp. 283-290
    • Kamvar, S.1    Klein, D.2    Manning, C.3
  • 17
    • 9444291271 scopus 로고    scopus 로고
    • Identification and tracing of ambiguous names: Discriminative and generative approaches
    • In
    • X. Li, P. Morie, and D. Roth. 2004. Identification and tracing of ambiguous names: Discriminative and generative approaches. In AAAI-04, pages 419-424.
    • (2004) AAAI-04 , pp. 419-424
    • Li, X.1    Morie, P.2    Roth, D.3
  • 18
    • 85107157397 scopus 로고    scopus 로고
    • Unsupervised personal name disambiguation
    • In
    • G. Mann and D. Yarowsky. 2003. Unsupervised personal name disambiguation. In CoNLL-03, pages 33-40.
    • (2003) CoNLL-03 , pp. 33-40
    • Mann, G.1    Yarowsky, D.2
  • 19
  • 20
    • 49449112901 scopus 로고    scopus 로고
    • Learning nonstructural distance metric by minimum cluster distortions
    • In
    • D. Mochihashi, G. Kikui, and K. Kita. 2004. Learning nonstructural distance metric by minimum cluster distortions. In COLING-04.
    • (2004) COLING-04
    • Mochihashi, D.1    Kikui, G.2    Kita, K.3
  • 21
    • 0242540413 scopus 로고    scopus 로고
    • Discovering word senses from text
    • In
    • P. Pantel and D. Lin. 2002. Discovering word senses from text. In KDD-02, pages 613-619.
    • (2002) KDD-02 , pp. 613-619
    • Pantel, P.1    Lin, D.2
  • 22
    • 0031632815 scopus 로고    scopus 로고
    • Learning to resolve natural language ambiguities: A unified approach
    • In
    • D. Roth. 1998. Learning to resolve natural language ambiguities: A unified approach. In AAAI-98, pages 806-813.
    • (1998) AAAI-98 , pp. 806-813
    • Roth, D.1
  • 23
    • 84898997673 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • In
    • M. Schultz and T. Joachims. 2004. Learning a distance metric from relative comparisons. In NIPS-04.
    • (2004) NIPS-04
    • Schultz, M.1    Joachims, T.2
  • 24
    • 9444250882 scopus 로고    scopus 로고
    • Overview of the TREC-2002 question answering track
    • In
    • E. Voorhees. 2002. Overview of the TREC-2002 question answering track. In TREC-02, pages 115-123.
    • (2002) TREC-02 , pp. 115-123
    • Voorhees, E.1
  • 25
    • 85119097733 scopus 로고    scopus 로고
    • Characterising measures of lexical distributional similarity
    • In
    • J. Weeds, D. Weir, and D. McCarthy. 2004. Characterising measures of lexical distributional similarity. In COLING-04.
    • (2004) COLING-04
    • Weeds, J.1    Weir, D.2    McCarthy, D.3
  • 26
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • In
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. 2002. Distance metric learning, with application to clustering with side-information. In NIPS-02.
    • (2002) NIPS-02
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.