메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1794-1797

A semi-supervised Hidden Markov model-based activity monitoring system

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVITY MONITORING SYSTEM; CLASSIFICATION SYSTEM; COMPLEX ACTIVITY; GENERAL MODEL; HUMAN ACTIVITIES; SEMI-SUPERVISED; STATISTICAL MODELS; TRAINING DATA SETS; TRAINING DATASET; TRIAXIAL ACCELEROMETER;

EID: 84862262501     PISSN: 1557170X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IEMBS.2011.6090511     Document Type: Conference Paper
Times cited : (6)

References (15)
  • 2
    • 79956347620 scopus 로고    scopus 로고
    • Accelerometrybased longitudinal biomarkers of stance posture in early parkinson's disease
    • M. Mancini, C. Zampieri, F. Horak, and L. Chiari, " Accelerometrybased longitudinal biomarkers of stance posture in early parkinson's disease," Gait and Posture, vol. 29, no. 1, p. e25, 2009.
    • (2009) Gait and Posture , vol.29 , Issue.1
    • Mancini, M.1    Zampieri, C.2    Horak, F.3    Chiari, L.4
  • 5
    • 79957898960 scopus 로고    scopus 로고
    • Biomechanical symptoms from gait and posture in patients after stroke
    • T. Batisheva, L. Rusina, and D. Skvortsov, "Biomechanical symptoms from gait and posture in patients after stroke," Gait and Posture, vol. 21, p. S105, 2005.
    • (2005) Gait and Posture , vol.21
    • Batisheva, T.1    Rusina, L.2    Skvortsov, D.3
  • 6
    • 53949117607 scopus 로고    scopus 로고
    • Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers
    • J.-Y. Yang, J.-S. Wang, and Y.-P. Chen, "Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers," Pattern Recogn. Lett., vol. 29, no. 16, pp. 2213-2220, 2008.
    • (2008) Pattern Recogn. Lett. , vol.29 , Issue.16 , pp. 2213-2220
    • Yang, J.-Y.1    Wang, J.-S.2    Chen, Y.-P.3
  • 8
    • 77950247206 scopus 로고    scopus 로고
    • Machine learning methods for classifying human physical activity from on-body accelerometers
    • A. Mannini and A. M. Sabatini, "Machine learning methods for classifying human physical activity from on-body accelerometers," Sensors, vol. 10, pp. 1154-1175, 2010.
    • (2010) Sensors , vol.10 , pp. 1154-1175
    • Mannini, A.1    Sabatini, A.M.2
  • 12
    • 70449574501 scopus 로고    scopus 로고
    • A framework to detect and classify activity transitions in low-power applications
    • ser. ICME'09. Piscataway, NJ, USA: IEEE Press. [Online]
    • J. Boyd and H. Sundaram, "A framework to detect and classify activity transitions in low-power applications," in Proceedings of the 2009 IEEE international conference on Multimedia and Expo, ser. ICME'09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 1712-1715. [Online]. Available: http://portal.acm.org/citation.cfm?id=1698924.1699355
    • (2009) Proceedings of the 2009 IEEE International Conference on Multimedia and Expo , pp. 1712-1715
    • Boyd, J.1    Sundaram, H.2
  • 13
    • 33644481397 scopus 로고    scopus 로고
    • Medicine and science
    • "Medicine and science," Sports and exercise, vol. 32, no. 8, pp. S439-S516, 2000.
    • (2000) Sports and Exercise , vol.32 , Issue.8
  • 14
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • L. R. Rabiner, "A tutorial on hidden markov models and selected applications in speech recognition," in Proceedings of the IEEE, 1989, pp. 257-286.
    • (1989) Proceedings of the IEEE , pp. 257-286
    • Rabiner, L.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.