-
16
-
-
0004268675
-
-
American Chemical Society, Canadian Chemical Society, Washington, Ottawa
-
J. R. Bolton, N. Mataga and G. McLendon, Electron Transfer in Inorganic, Organic and Biological Systems, American Chemical Society, Canadian Chemical Society, Washington, Ottawa, 1991
-
(1991)
Electron Transfer in Inorganic, Organic and Biological Systems
-
-
Bolton, J.R.1
Mataga, N.2
McLendon, G.3
-
26
-
-
0009988082
-
-
J. V. Coe G. H. Lee J. G. Eaton S. T. Arnold H. W. Sarkas K. H. Bowen C. Ludewigt H. Haberland D. R. Worsnop J. Chem. Phys. 1990 92 3980
-
(1990)
J. Chem. Phys.
, vol.92
, pp. 3980
-
-
Coe, J.V.1
Lee, G.H.2
Eaton, J.G.3
Arnold, S.T.4
Sarkas, H.W.5
Bowen, K.H.6
Ludewigt, C.7
Haberland, H.8
Worsnop, D.R.9
-
37
-
-
84947409756
-
-
The experimental gas-phase geometry of the water molecules was used in the present study. However, using the water geometry predicted by the model chemistries employed to compute the energy and forces - which differs only slightly from the experimental one - did not affect the outcome of the simulations, which were found to be essentially insensitive to the precise choice of water geometry
-
D. J. Evans S. Murad Mol. Phys. 1977 34 327
-
(1977)
Mol. Phys.
, vol.34
, pp. 327
-
-
Evans, D.J.1
Murad, S.2
-
49
-
-
84944675147
-
-
This arrangement of the diffuse functions leads to a reasonable distribution of the excess electron, and placement of the diffuse functions at other locations does not significantly affect the outcome of the calculations. For a discussion of the effect of the choice of diffuse functions on the electronic distribution of the excess electron, see
-
A. Bergner M. Dolg W. Kuechle H. Stoll H. Preuss Mol. Phys. 1993 80 1431
-
(1993)
Mol. Phys.
, vol.80
, pp. 1431
-
-
Bergner, A.1
Dolg, M.2
Kuechle, W.3
Stoll, H.4
Preuss, H.5
-
51
-
-
33747615553
-
-
see
-
H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, G. Rauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni and T. Thorsteinsson, MOLPRO, version 2006.1, a package of ab initio programs, see http:// www.molpro.net
-
MOLPRO, Version 2006.1, A Package of Ab Initio Programs
-
-
Werner, H.-J.1
Knowles, P.J.2
Lindh, R.3
Manby, F.R.4
Schütz, M.5
Celani, P.6
Korona, T.7
Rauhut, G.8
Amos, R.D.9
Bernhardsson, A.10
Berning, A.11
Cooper, D.L.12
Deegan, M.J.O.13
Dobbyn, A.J.14
Eckert, F.15
Hampel, C.16
Hetzer, G.17
Lloyd, A.W.18
McNicholas, S.J.19
Meyer, W.20
Mura, M.E.21
Nicklass, A.22
Palmieri, P.23
Pitzer, R.24
Schumann, U.25
Stoll, H.26
Stone, A.J.27
Tarroni, R.28
Thorsteinsson, T.29
more..
-
52
-
-
0035825965
-
-
5 and initial velocities resulted in overall similar relaxation dynamics, primarily governed by the strong I-H repulsive interactions in the Franck-Condon geometry. In all cases, the dynamics is characterized by the initial rapid synchronous rotational motion of the water molecules and the accompanying sharp decrease in the cluster potential energy within 0.2 ps. This is not surprising, since the initial thermal energy assigned to the cluster is negligible, compared to the kinetic energy acquired in the simulations, due to the strong I-H repulsive interactions
-
H. M. Lee K. S. Kim J. Chem. Phys. 2001 114 4461
-
(2001)
J. Chem. Phys.
, vol.114
, pp. 4461
-
-
Lee, H.M.1
Kim, K.S.2
-
55
-
-
0037149167
-
-
5]* with and without iodine, for cluster configurations at 0 fs (strong repulsions) and 50 fs (little or no repulsion)
-
F. D. Vila K. D. Jordan J. Phys. Chem. A 2002 106 1391
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 1391
-
-
Vila, F.D.1
Jordan, K.D.2
|